Mapreduce组合器

use*_*464 10 java hadoop mapreduce

我有一个简单的mapreduce代码,包括mapper,reducer和combiner.mapper的输出传递给组合器.但是对于reducer而言,不是来自组合器的输出,而是传递mapper的输出.

请帮助

码:

package Combiner;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class AverageSalary
{
public static class Map extends  Mapper<LongWritable, Text, Text, DoubleWritable> 
{
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException 
    {    
        String[] empDetails= value.toString().split(",");
        Text unit_key = new Text(empDetails[1]);      
        DoubleWritable salary_value = new DoubleWritable(Double.parseDouble(empDetails[2]));
        context.write(unit_key,salary_value);    

    }  
}
public static class Combiner extends Reducer<Text,DoubleWritable, Text,Text> 
{
    public void reduce(final Text key, final Iterable<DoubleWritable> values, final Context context)
    {
        String val;
        double sum=0;
        int len=0;
        while (values.iterator().hasNext())
        {
            sum+=values.iterator().next().get();
            len++;
        }
        val=String.valueOf(sum)+":"+String.valueOf(len);
        try {
            context.write(key,new Text(val));
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}
public static class Reduce extends Reducer<Text,Text, Text,Text> 
{
    public void reduce (final Text key, final Text values, final Context context)
    {
        //String[] sumDetails=values.toString().split(":");
        //double average;
        //average=Double.parseDouble(sumDetails[0]);
        try {
            context.write(key,values);
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}
public static void main(String args[])
{
    Configuration conf = new Configuration();
    try
    {
     String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();    
     if (otherArgs.length != 2) {      
         System.err.println("Usage: Main <in> <out>");      
         System.exit(-1);    }    
     Job job = new Job(conf, "Average salary");    
     //job.setInputFormatClass(KeyValueTextInputFormat.class);    
     FileInputFormat.addInputPath(job, new Path(otherArgs[0]));    
     FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));    
     job.setJarByClass(AverageSalary.class);    
     job.setMapperClass(Map.class);    
     job.setCombinerClass(Combiner.class);
     job.setReducerClass(Reduce.class);    
     job.setOutputKeyClass(Text.class);    
     job.setOutputValueClass(Text.class);    

        System.exit(job.waitForCompletion(true) ? 0 : -1);
    } catch (ClassNotFoundException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (IOException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (InterruptedException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}
Run Code Online (Sandbox Code Playgroud)

}

Don*_*ner 17

Combiners的第一条规则是:不要假设组合器会运行.将组合器视为优化.

无法保证Combiner可以运行您的所有数据.在某些情况下,当数据不需要溢出到磁盘时,MapReduce将完全跳过使用Combiner.另请注意,Combiner可能会在数据子集上运行多次!每次泄漏都会运行一次.

在你的情况下,你正在做出这个错误的假设.你应该在Combiner和Reducer中做总和.

此外,您还应该关注@ user987339的答案.组合器的输入和输出必须相同(Text,Double - > Text,Double),它需要与Mapper的输出和Reducer的输入相匹配.


use*_*339 8

你好像忘记了合成器的重要属性:

键/值的输入类型和键/值的输出类型必须相同.

你不能接受Text/DoubleWritable并返回一个 Text/Text.我建议你使用Text替代DoubleWritable,并在里面进行适当的解析Combiner.