CUDA Mandelbrot设定

And*_*dro 2 parallel-processing cuda gpu

这是一个顺序的Mandelbrot Set实现.

 void mandelbrot(PGMData *I)
{
    float x0,y0,x,y,xtemp;
    int i,j;
    int color;
    int iter;
    int MAX_ITER=1000;  
    for(i=0; i<I->height; i++)
        for(j=0; j<I->width; j++)
        {
            x0 = (float)j/I->width*(float)3.5-(float)2.5; 
            y0 = (float)i/I->height*(float)2.0-(float)1.0;
            x = 0;
            y = 0;
            iter = 0;
            while((x*x-y*y <= 4) && (iter < MAX_ITER))
            { 
                xtemp = x*x-y*y+x0;
                y = 2*x*y+y0;
                x = xtemp;
                iter++;
            }
            color = (int)(iter/(float)MAX_ITER*(float)I->max_gray);
            I->image[i*I->width+j] = I->max_gray-color;
        }
}
Run Code Online (Sandbox Code Playgroud)

我想用CUDA对它进行并列化,但我似乎误解了一些事情,现在我陷入了困境.我试过在互联网上搜索,但没有什么真正伟大的.

核心:

__global__ void calc(int *pos)
{
    int row= blockIdx.y * blockDim.y + threadIdx.y;  // WIDTH
    int col = blockIdx.x * blockDim.x + threadIdx.x;  // HEIGHT
    int idx = row * WIDTH + col;

    if(col > WIDTH || row > HEIGHT || idx > N) return;

    float x0 = (float)row/WIDTH*(float)3.5-(float)2.5;
    float y0 = (float)col/HEIGHT*(float)2.0-(float)1.0; 

    int x = 0, y = 0, iter = 0, xtemp = 0;
    while((x*x-y*y <= 4) && (iter < MAX_ITER))
    { 
        xtemp = x*x-y*y+x0;
        y = 2*x*y+y0;
        x = xtemp;
        iter++;
    }
    int color = 255 - (int)(iter/(float)MAX_ITER*(float)255);
    __syncthreads();
    pos[idx] = color;//color;// - color;

}
Run Code Online (Sandbox Code Playgroud)

内核以这种方式启动:

dim3 block_size(16, 16);
dim3 grid_size((N)/block_size.x, (int) N / block_size.y);
calc<<<grid_size,block_size>>>(d_pgmData);
Run Code Online (Sandbox Code Playgroud)

以下是常量:

#define HEIGHT 512
#define WIDTH 512   
#define N (HEIGHT*WIDTH)
Run Code Online (Sandbox Code Playgroud)

整个GPU功能

void mandelbrotGPU(PGMData *I)
{
    int *pos = (int *)malloc(HEIGHT*WIDTH*sizeof(int));
    int *d_pgmData;

    cudaMalloc((void **)&d_pgmData, sizeof(int)*WIDTH*HEIGHT);


    cudaMemcpy(d_pgmData, pos ,HEIGHT*WIDTH*sizeof(int) ,cudaMemcpyHostToDevice);

    dim3 block_size(16, 16);
    dim3 grid_size((N)/block_size.x, (int) N / block_size.y);
    calc<<<grid_size,block_size>>>(d_pgmData);

    cudaMemcpy(pos,d_pgmData,HEIGHT*WIDTH*sizeof(int) ,cudaMemcpyDeviceToHost);
    cudaFree(d_pgmData);
    I->image = pos;
}
Run Code Online (Sandbox Code Playgroud)

问题是:它要么返回垃圾,要么是驱动程序崩溃.我真的很感激一些建议,因为我真的被卡住了.

Rog*_*ahl 9

这是您的代码的工作版本(使用OpenCV):

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace cv;
using namespace std;

#define HEIGHT 512 // must be multiple of block_size.y
#define WIDTH 512 // must be multiple of block_size.x
#define MAX_ITER 10000

void mandelbrotGPU(char*);
__global__ void calc(char* image_buffer);

#define cudaAssertSuccess(ans) { _cudaAssertSuccess((ans), __FILE__, __LINE__); }
inline void _cudaAssertSuccess(cudaError_t code, char *file, int line)
{
  if (code != cudaSuccess)  {
    fprintf(stderr,"_cudaAssertSuccess: %s %s %d\n", cudaGetErrorString(code), file, line);
    exit(code);
  }
}

int main(int argc, char** argv)
{
  IplImage* image_output = cvCreateImage(cvSize(WIDTH, HEIGHT), IPL_DEPTH_8U, 1);
  mandelbrotGPU(image_output->imageData);
  cvShowImage("GPU", image_output);
  waitKey(0);
  cvReleaseImage(&image_output);
}

void mandelbrotGPU(char* image_buffer)
{
  char* d_image_buffer;
  cudaAssertSuccess(cudaMalloc(&d_image_buffer, WIDTH * HEIGHT));
  dim3 block_size(16, 16);
  dim3 grid_size(WIDTH / block_size.x, HEIGHT / block_size.y);
  calc<<<grid_size, block_size>>>(d_image_buffer);
  cudaAssertSuccess(cudaPeekAtLastError());
  cudaAssertSuccess(cudaDeviceSynchronize());
  cudaAssertSuccess(cudaMemcpy(image_buffer, d_image_buffer, HEIGHT * WIDTH, cudaMemcpyDeviceToHost));
  cudaAssertSuccess(cudaFree(d_image_buffer));
}

__global__ void calc(char* image_buffer)
{
  int row = blockIdx.y * blockDim.y + threadIdx.y;  // WIDTH
  int col = blockIdx.x * blockDim.x + threadIdx.x;  // HEIGHT
  int idx = row * WIDTH + col;
  if(col >= WIDTH || row >= HEIGHT) return;

  float x0 = ((float)col / WIDTH) * 3.5f - 2.5f;
  float y0 = ((float)row / HEIGHT) * 3.5f - 1.75f;

  float x = 0.0f;
  float y = 0.0f;
  int iter = 0;
  float xtemp;
  while((x * x + y * y <= 4.0f) && (iter < MAX_ITER))
  { 
    xtemp = x * x - y * y + x0;
    y = 2.0f * x * y + y0;
    x = xtemp;
    iter++;
  }

  int color = iter * 5;
  if (color >= 256) color = 0;
  image_buffer[idx] = color;
}
Run Code Online (Sandbox Code Playgroud)

输出:

Mandelbrot输出

最重要的变化:

  • 删除了__syncthreads();.此算法不使用其他线程生成的数据,因此不需要同步线程.
  • 删除了将主机缓冲区复制到设备.由于Mandelbrot算法写入整个设备缓冲区,因此没有必要.
  • 修复了错误的网格大小计算
  • 删除了主机内存的malloc,因为结果被直接复制到OpenCV图像缓冲区中.
  • 将缓冲区更改为使用字节而不是整数,这在您具有8位分辨率的单个灰色通道时更为方便.
  • 删除了一些不必要的浮动演员阵容.在计算中使用整数和浮点数时,整数会自动提升为浮点数.
  • 修复了Mandelbrot算法中的两个问题:
    • x并且在他们应该是s 时y被宣布为s.intfloat
    • while循环中的第一个表达式应该包含a +,而不是a -.