Lea*_*ner 5 python numpy machine-learning scikit-learn
我正在从文本语料库中提取特征,并使用 td-fidf 矢量器和 scikit-learn 中的截断奇异值分解来实现这一目标。然而,由于我想尝试的算法需要密集矩阵,并且矢量化器返回稀疏矩阵,我需要将这些矩阵转换为密集数组。但是,每当我尝试转换这些数组时,我都会收到一条错误消息,告诉我我的 numpy 数组对象没有属性“toarray”。我究竟做错了什么?
功能:
def feature_extraction(train,train_test,test_set):
vectorizer = TfidfVectorizer(min_df = 3,strip_accents = "unicode",analyzer = "word",token_pattern = r'\w{1,}',ngram_range = (1,2))
print("fitting Vectorizer")
vectorizer.fit(train)
print("transforming text")
train = vectorizer.transform(train)
train_test = vectorizer.transform(train_test)
test_set = vectorizer.transform(test_set)
print("Dimensionality reduction")
svd = TruncatedSVD(n_components = 100)
svd.fit(train)
train = svd.transform(train)
train_test = svd.transform(train_test)
test_set = svd.transform(test_set)
print("convert to dense array")
train = train.toarray()
test_set = test_set.toarray()
train_test = train_test.toarray()
print(train.shape)
return train,train_test,test_set
Run Code Online (Sandbox Code Playgroud)
追溯:
Traceback (most recent call last):
File "C:\Users\Anonymous\workspace\final_submission\src\linearSVM.py", line 24, in <module>
x_train,x_test,test_set = feature_extraction(x_train,x_test,test_set)
File "C:\Users\Anonymous\workspace\final_submission\src\Preprocessing.py", line 57, in feature_extraction
train = train.toarray()
AttributeError: 'numpy.ndarray' object has no attribute 'toarray'
Run Code Online (Sandbox Code Playgroud)
更新: 威利指出我对矩阵稀疏的假设可能是错误的。因此,我尝试将数据输入到具有降维功能的算法中,它实际上无需任何转换即可工作,但是当我排除降维(这给了我大约 53k 个特征)时,我收到以下错误:
Traceback (most recent call last):
File "C:\Users\Anonymous\workspace\final_submission\src\linearSVM.py", line 28, in <module>
result = bayesian_ridge(x_train,x_test,y_train,y_test,test_set)
File "C:\Users\Anonymous\workspace\final_submission\src\Algorithms.py", line 84, in bayesian_ridge
algo = algo.fit(x_train,y_train[:,i])
File "C:\Python27\lib\site-packages\sklearn\linear_model\bayes.py", line 136, in fit
dtype=np.float)
File "C:\Python27\lib\site-packages\sklearn\utils\validation.py", line 220, in check_arrays
raise TypeError('A sparse matrix was passed, but dense '
TypeError: A sparse matrix was passed, but dense data is required. Use X.toarray() to convert to a dense numpy array.
Run Code Online (Sandbox Code Playgroud)
有人可以解释一下吗?
更新2
根据要求,我将给出所有涉及的代码。由于它分散在不同的文件中,我将分步骤发布它。为了清楚起见,我将保留所有模块导入。
这就是我预处理代码的方式:
def regexp(data):
for row in range(len(data)):
data[row] = re.sub(r'[\W_]+'," ",data[row])
return data
def clean_the_text(data):
alist = []
data = nltk.word_tokenize(data)
for j in data:
j = j.lower()
alist.append(j.rstrip('\n'))
alist = " ".join(alist)
return alist
def loop_data(data):
for i in range(len(data)):
data[i] = clean_the_text(data[i])
return data
if __name__ == "__main__":
print("loading train")
train_text = porter_stemmer(loop_data(regexp(list(np.array(p.read_csv(os.path.join(dir,"train.csv")))[:,1]))))
print("loading test_set")
test_set = porter_stemmer(loop_data(regexp(list(np.array(p.read_csv(os.path.join(dir,"test.csv")))[:,1]))))
Run Code Online (Sandbox Code Playgroud)
将 train_set 拆分为 x_train 和 x_test 进行交叉验证后,我使用上面的 feature_extraction 函数转换数据。
x_train,x_test,test_set = feature_extraction(x_train,x_test,test_set)
Run Code Online (Sandbox Code Playgroud)
最后我将它们输入到我的算法中
def bayesian_ridge(x_train,x_test,y_train,y_test,test_set):
algo = linear_model.BayesianRidge()
algo = algo.fit(x_train,y_train)
pred = algo.predict(x_test)
error = pred - y_test
result.append(algo.predict(test_set))
print("Bayes_error: ",cross_val(error))
return result
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
38308 次 |
| 最近记录: |