bog*_*ron 11 python performance numpy linear-algebra
我通常从numpy的einsum函数中获得了很好的表现(我喜欢它的语法).@Ophion对这个问题的回答表明 - 对于测试的案例 - einsum始终优于"内置"功能(有时候会有一些,有时会很多).但我刚遇到一个einsum慢得多的情况.考虑以下等效函数:
(M, K) = (1000000, 20)
C = np.random.rand(K, K)
X = np.random.rand(M, K)
def func_dot(C, X):
Y = X.dot(C)
return np.sum(Y * X, axis=1)
def func_einsum(C, X):
return np.einsum('ik,km,im->i', X, C, X)
def func_einsum2(C, X):
# Like func_einsum but break it into two steps.
A = np.einsum('ik,km', X, C)
return np.einsum('ik,ik->i', A, X)
Run Code Online (Sandbox Code Playgroud)
我希望func_einsum
跑得最快,但这不是我遇到的.在具有超线程,numpy版本1.9.0.dev-7ae0206的四核CPU上运行,以及使用OpenBLAS进行多线程处理,我得到以下结果:
In [2]: %time y1 = func_dot(C, X)
CPU times: user 320 ms, sys: 312 ms, total: 632 ms
Wall time: 209 ms
In [3]: %time y2 = func_einsum(C, X)
CPU times: user 844 ms, sys: 0 ns, total: 844 ms
Wall time: 842 ms
In [4]: %time y3 = func_einsum2(C, X)
CPU times: user 292 ms, sys: 44 ms, total: 336 ms
Wall time: 334 ms
Run Code Online (Sandbox Code Playgroud)
当我增加到K
200时,差异更加极端:
In [2]: %time y1= func_dot(C, X)
CPU times: user 4.5 s, sys: 1.02 s, total: 5.52 s
Wall time: 2.3 s
In [3]: %time y2= func_einsum(C, X)
CPU times: user 1min 16s, sys: 44 ms, total: 1min 16s
Wall time: 1min 16s
In [4]: %time y3 = func_einsum2(C, X)
CPU times: user 15.3 s, sys: 312 ms, total: 15.6 s
Wall time: 15.6 s
Run Code Online (Sandbox Code Playgroud)
有人可以解释为什么einsum这么慢吗?
如果重要,这是我的numpy配置:
In [6]: np.show_config()
lapack_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
language = f77
atlas_threads_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_WITHOUT_LAPACK', None)]
language = c
include_dirs = ['/usr/local/include']
blas_opt_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_INFO', '"\\"None\\""')]
language = c
include_dirs = ['/usr/local/include']
atlas_blas_threads_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_INFO', '"\\"None\\""')]
language = c
include_dirs = ['/usr/local/include']
lapack_opt_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_WITHOUT_LAPACK', None)]
language = f77
include_dirs = ['/usr/local/include']
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
Run Code Online (Sandbox Code Playgroud)
Jai*_*ime 17
你可以充分利用这两个方面:
def func_dot_einsum(C, X):
Y = X.dot(C)
return np.einsum('ij,ij->i', Y, X)
Run Code Online (Sandbox Code Playgroud)
在我的系统上:
In [7]: %timeit func_dot(C, X)
10 loops, best of 3: 31.1 ms per loop
In [8]: %timeit func_einsum(C, X)
10 loops, best of 3: 105 ms per loop
In [9]: %timeit func_einsum2(C, X)
10 loops, best of 3: 43.5 ms per loop
In [10]: %timeit func_dot_einsum(C, X)
10 loops, best of 3: 21 ms per loop
Run Code Online (Sandbox Code Playgroud)
如果可用,np.dot
使用BLAS,MKL或您拥有的任何库.因此呼叫np.dot
几乎肯定是多线程的.np.einsum
它有自己的循环,因此不使用任何这些优化,除了它自己使用SIMD来加速通过vanilla C实现.
然后是多输入einsum调用运行得慢得多...... einsum的numpy源非常复杂,我不完全理解它.所以请注意以下内容充其量只是推测,但这是我认为正在发生的事情......
当你运行类似的东西时np.einsum('ij,ij->i', a, b)
,实现的好处np.sum(a*b, axis=1)
来自于避免必须用所有产品实例化中间数组,并在其上循环两次.所以在低级别发生的事情是这样的:
for i in range(I):
out[i] = 0
for j in range(J):
out[i] += a[i, j] * b[i, j]
Run Code Online (Sandbox Code Playgroud)
现在说你正在追求类似的东西:
np.einsum('ij,jk,ik->i', a, b, c)
Run Code Online (Sandbox Code Playgroud)
你可以做同样的操作
np.sum(a[:, :, None] * b[None, :, :] * c[:, None, :], axis=(1, 2))
Run Code Online (Sandbox Code Playgroud)
而我认为einsum所做的就是运行这个最后的代码,而不必实例化巨大的中间数组,这肯定会让事情变得更快:
In [29]: a, b, c = np.random.rand(3, 100, 100)
In [30]: %timeit np.einsum('ij,jk,ik->i', a, b, c)
100 loops, best of 3: 2.41 ms per loop
In [31]: %timeit np.sum(a[:, :, None] * b[None, :, :] * c[:, None, :], axis=(1, 2))
100 loops, best of 3: 12.3 ms per loop
Run Code Online (Sandbox Code Playgroud)
但是如果你仔细看一下,摆脱中间存储可能是一件可怕的事情.这就是我认为einsum在低级别做的事情:
for i in range(I):
out[i] = 0
for j in range(J):
for k in range(K):
out[i] += a[i, j] * b[j, k] * c[i, k]
Run Code Online (Sandbox Code Playgroud)
但是你正在重复大量的操作!如果您改为:
for i in range(I):
out[i] = 0
for j in range(J):
temp = 0
for k in range(K):
temp += b[j, k] * c[i, k]
out[i] += a[i, j] * temp
Run Code Online (Sandbox Code Playgroud)
你会I * J * (K-1)
减少乘法(和I * J
额外的加法),并节省大量的时间.我的猜测是,einsum不够智能,不能在这个级别上优化事物.在源代码中有一个提示,它只用1或2个操作数优化操作,而不是3.在任何情况下,为一般输入自动执行此操作似乎只是简单...
einsum
对 '2 个操作数,ndim=2' 有一个特例。在这种情况下,有 3 个操作数,总共有 3 个维度。所以它必须使用一个通用的nditer
.
在尝试了解字符串输入是如何解析的时,我编写了一个纯 Python einsum 模拟器,https://github.com/hpaulj/numpy-einsum/blob/master/einsum_py.py
(精简) einsum 和 sum-of-products 函数是:
def myeinsum(subscripts, *ops, **kwargs):
# dropin preplacement for np.einsum (more or less)
<parse subscript strings>
<prepare op_axes>
x = sum_of_prod(ops, op_axes, **kwargs)
return x
def sum_of_prod(ops, op_axes,...):
...
it = np.nditer(ops, flags, op_flags, op_axes)
it.operands[nop][...] = 0
it.reset()
for (x,y,z,w) in it:
w[...] += x*y*z
return it.operands[nop]
Run Code Online (Sandbox Code Playgroud)
调试输出myeinsum('ik,km,im->i',X,C,X,debug=True)
与(M,K)=(10,5)
{'max_label': 109,
'min_label': 105,
'nop': 3,
'shapes': [(10, 5), (5, 5), (10, 5)],
....}}
...
iter labels: [105, 107, 109],'ikm'
op_axes [[0, 1, -1], [-1, 0, 1], [0, -1, 1], [0, -1, -1]]
Run Code Online (Sandbox Code Playgroud)
如果你在中编写这样的sum-of-prod
函数,cython
你应该得到一些接近于广义einsum
.
使用 full (M,K)
,这个模拟的 einsum 慢了 6-7 倍。
基于其他答案的一些时间安排:
In [84]: timeit np.dot(X,C)
1 loops, best of 3: 781 ms per loop
In [85]: timeit np.einsum('ik,km->im',X,C)
1 loops, best of 3: 1.28 s per loop
In [86]: timeit np.einsum('im,im->i',A,X)
10 loops, best of 3: 163 ms per loop
Run Code Online (Sandbox Code Playgroud)
这'im,im->i' step is substantially faster than the other. The sum dimension,
米is only 20. I suspect
einsum`是这当作一种特殊情况。
In [87]: timeit np.einsum('im,im->i',np.dot(X,C),X)
1 loops, best of 3: 950 ms per loop
In [88]: timeit np.einsum('im,im->i',np.einsum('ik,km->im',X,C),X)
1 loops, best of 3: 1.45 s per loop
Run Code Online (Sandbox Code Playgroud)
这些复合计算的时间只是相应部分的总和。
归档时间: |
|
查看次数: |
3947 次 |
最近记录: |