CVi*_*ous 6 opencv gradient image-processing
我试图使用openCV的Sobel方法的结果确定图像梯度方向.
我明白这应该是一个非常简单的任务.我从这里复制了许多资源和答案的方法,但无论我做什么,结果方向总是在0到57度之间(我希望范围是0-360).
我相信所有的深度都是正确的.我尝试使用16S数据和8U数据计算方向.
我只是看不出我哪里出错了?谁能发现我的错误?
void getGradients(IplImage* original, cv::Mat* gradArray)
{
cv::Mat original_Mat(original, true);
// Convert it to gray
cv::cvtColor( original_Mat, original_Mat, CV_RGB2GRAY );
//cv::blur(original_Mat, original_Mat, cv::Size(7,7));
/// Generate grad_x and grad_y
cv::Mat grad_x = cv::Mat::zeros(original->height, original->width, CV_16S);
cv::Mat grad_y = cv::Mat::zeros(original->height, original->width, CV_16S);
cv::Mat abs_grad_x = cv::Mat::zeros(original->height, original->width, CV_8U);
cv::Mat abs_grad_y = cv::Mat::zeros(original->height, original->width, CV_8U);;
/// Gradient X
cv::Sobel(original_Mat, grad_x, CV_16S, 1, 0, 3);
cv::convertScaleAbs( grad_x, abs_grad_x );
/// Gradient Y
cv::Sobel(original_Mat, grad_y, CV_16S, 0, 1, 3);
cv::convertScaleAbs( grad_y, abs_grad_y );
uchar* pixelX = abs_grad_x.data;
uchar* pixelY = abs_grad_y.data;
uchar* grad1 = gradArray[0].data;
uchar* grad2 = gradArray[1].data;
uchar* grad3 = gradArray[2].data;
uchar* grad4 = gradArray[3].data;
uchar* grad5 = gradArray[4].data;
uchar* grad6 = gradArray[5].data;
uchar* grad7 = gradArray[6].data;
uchar* grad8 = gradArray[7].data;
int count = 0;
int min = 999999;
int max = 0;
for(int i = 0; i < grad_x.rows * grad_x.cols; i++)
{
int directionRAD = atan2(pixelY[i], pixelX[i]);
int directionDEG = directionRAD / PI * 180;
if(directionDEG < min){min = directionDEG;}
if(directionDEG > max){max = directionDEG;}
if(directionDEG >= 0 && directionDEG <= 45) { grad1[i] = 255; count++;}
if(directionDEG >= 45 && directionDEG <= 90) { grad2[i] = 255; count++;}
if(directionDEG >= 90 && directionDEG <= 135) { grad3[i] = 255; count++;}
if(directionDEG >= 135 && directionDEG <= 190) { grad4[i] = 255; count++;}
if(directionDEG >= 190 && directionDEG <= 225) { grad5[i] = 255; count++;}
if(directionDEG >= 225 && directionDEG <= 270) { grad6[i] = 255; count++;}
if(directionDEG >= 270 && directionDEG <= 315) { grad7[i] = 255; count++;}
if(directionDEG >= 315 && directionDEG <= 360) { grad8[i] = 255; count++;}
if(directionDEG < 0 || directionDEG > 360)
{
cout<<"Weird gradient direction given in method: getGradients.";
}
}
}
Run Code Online (Sandbox Code Playgroud)
您正在使用整数运算,因此您对弧度和度数的计算会因截断而受到严重影响.
也atan2给范围内的结果-PI来+PI,所以如果你想在范围度的值0..360你需要添加一个180度的修正:
double directionRAD = atan2(pixelY[i], pixelX[i]);
int directionDEG = (int)(180.0 + directionRAD / M_PI * 180.0);
Run Code Online (Sandbox Code Playgroud)
注意使用的double,而不是int为directionRAD.
专业提示:学习使用调试器来逐步调试代码,随时检查变量 - 这将使得修复这样的简单错误比等待StackOverflow上的响应容易得多.
您可以使用Sobel算子获得x导数dx和y导数dy.然后,您可以使用公式计算渐变的大小和方向.G=sqrt(dx^2+dy^2), theta=arctan(dy/dx).你可以发现这只是将descartes坐标系(x,y)转换为极坐标(rho,theta)!
还有就是你做的绝对值一些错误代码dx和dy,这使得方向总是在笛卡尔的第一象限坐标系.您使用的函数convertScaleAbs将结果转换为8位,这会导致截断错误.
我有一个演示来部分根据您的代码计算幅度.
const string imgname = "F:/OpenCV/square.jpg";
Mat img = imread(imgname, CV_LOAD_IMAGE_COLOR);
// 1. convert it to gray value
Mat gray;
cvtColor(img, gray, CV_BGR2GRAY);
// 2. blur the image
blur(gray, gray, Size(7, 7));
// 3. sobel
Mat grad_x, grad_y;
Scharr(gray, grad_x, CV_32FC1, 1, 0);
Scharr(gray, grad_y, CV_32FC1, 0, 1);
// 4. calculate gradient magnitude and direction
Mat magnitude, direction;
bool useDegree = true; // use degree or rad
// the range of the direction is [0,2pi) or [0, 360)
cartToPolar(grad_x, grad_y, magnitude, direction, useDegree);
// test, the histogram of the directions
vector<int> cnt(8, 0); // 0-45, 45-90, ..., 315-360
for(auto iter = direction.begin<float>(); iter != direction.end<float>(); ++iter)
{
int idx = static_cast<int>(*iter) / 45;
++cnt[idx];
}
Mat scaled;
convertScaleAbs(magnitude, scaled);
imshow("magnitude", scaled);
for(auto v : cnt)
cout << v << " ";
Run Code Online (Sandbox Code Playgroud)