如何收听N个频道?(动态选择语句)

Joh*_*ith 105 go

要开始执行两个goroutine的无限循环,我可以使用下面的代码:

收到消息后,它将启动一个新的goroutine并继续下去.

c1 := make(chan string)
c2 := make(chan string)

go DoStuff(c1, 5)
go DoStuff(c2, 2)

for ; true;  {
    select {
    case msg1 := <-c1:
        fmt.Println("received ", msg1)
        go DoStuff(c1, 1)
    case msg2 := <-c2:
        fmt.Println("received ", msg2)
        go DoStuff(c2, 9)
    }
}
Run Code Online (Sandbox Code Playgroud)

我现在想对N goroutines有相同的行为,但是在这种情况下select语句会如何?

这是我开始使用的代码位,但我很困惑如何编写select语句

numChans := 2

//I keep the channels in this slice, and want to "loop" over them in the select statemnt
var chans = [] chan string{}

for i:=0;i<numChans;i++{
    tmp := make(chan string);
    chans = append(chans, tmp);
    go DoStuff(tmp, i + 1)

//How shall the select statment be coded for this case?  
for ; true;  {
    select {
    case msg1 := <-c1:
        fmt.Println("received ", msg1)
        go DoStuff(c1, 1)
    case msg2 := <-c2:
        fmt.Println("received ", msg2)
        go DoStuff(c2, 9)
    }
}
Run Code Online (Sandbox Code Playgroud)

Jam*_*dge 139

您可以使用reflect包中的Select函数执行此操作:

func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool)

Select执行由案例列表描述的选择操作.与Go select语句一样,它会阻塞,直到至少有一个案例可以继续,进行统一的伪随机选择,然后执行该案例.它返回所选情况的索引,如果该情况是接收操作,则返回接收的值和指示该值是否对应于通道上的发送的布尔值(与通道关闭时接收的零值相反).

传入一个SelectCase结构数组,用于标识要选择的通道,操作方向以及发送操作时要发送的值.

所以你可以这样做:

cases := make([]reflect.SelectCase, len(chans))
for i, ch := range chans {
    cases[i] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(ch)}
}
chosen, value, ok := reflect.Select(cases)
# ok will be true if the channel has not been closed.
ch := chans[chosen]
msg := value.String()
Run Code Online (Sandbox Code Playgroud)

你可以在这里试验一个更加丰富的例子:http://play.golang.org/p/8zwvSk4kjx

  • 这种选择中的案件数量是否有实际限制?如果你超越它,那么性能会受到严重影响? (3认同)
  • 也许这是我的无能,但是当您通过通道发送和接收复杂结构时,我发现很难真正使用这种模式。正如蒂姆·阿克莱尔(Tim Allclair)所说,通过共享的“汇总”渠道对我来说要容易得多。 (3认同)

Tim*_*air 75

您可以通过将每个通道包装在goroutine中来实现此目的,该goroutine将"转发"消息"转发"到共享的"聚合"通道.例如:

agg := make(chan string)
for _, ch := range chans {
  go func(c chan string) {
    for msg := range c {
      agg <- msg
    }
  }(ch)
}

select {
case msg <- agg:
    fmt.Println("received ", msg)
}
Run Code Online (Sandbox Code Playgroud)

如果您需要知道消息来自哪个通道,您可以将其包含在带有任何额外信息的结构中,然后再将其转发到聚合通道.

在我的(有限的)测试中,这个方法使用反射包大大地执行:

$ go test dynamic_select_test.go -test.bench=.
...
BenchmarkReflectSelect         1    5265109013 ns/op
BenchmarkGoSelect             20      81911344 ns/op
ok      command-line-arguments  9.463s
Run Code Online (Sandbox Code Playgroud)

基准代码在这里

  • 您的基准代码不正确,您需要在基准中[循环`bN`](https://golang.org/pkg/testing/#hdr-Benchmarks)。否则结果(在你的输出中除以 `bN`、1 和 2000000000)将完全没有意义。 (2认同)
  • @DaveC 谢谢!结论没有改变,但结果要理智得多。 (2认同)
  • 一个重要的缺点(与 `reflect.Select` 方法相比)是 goroutines 在合并的每个通道上执行合并缓冲区至少有一个值。通常这不会成为问题,但在某些特定的应用程序中可能会破坏交易:(。 (2认同)
  • 缓冲合并通道使问题变得更糟。问题是只有反射解决方案才能具有完全无缓冲的语义。我已经继续发布了我正在尝试的测试代码作为单独的答案(希望)澄清我想说的内容。 (2认同)

Dav*_*e C 21

扩展对先前答案的一些评论并提供更清晰的比较,这是迄今为止给出的两种方法的示例,给出相同的输入,一段要读取的通道以及调用每个值的函数,这些函数也需要知道哪个渠道价值来自.

这些方法有三个主要区别:

  • 复杂.虽然它可能部分是读者偏好,但我发现频道方法更具惯用性,直接性和可读性.

  • 性能.在我的Xeon amd64系统上,goroutines + channel out执行反射解决方案大约两个数量级(一般来说Go中的反射通常较慢,只应在绝对需要时使用).当然,如果在处理结果的函数或向输入通道写入值时存在任何显着延迟,则这种性能差异很容易变得无关紧要.

  • 阻止/缓冲语义.这一点的重要性取决于用例.大多数情况下它要么无关紧要,要么goroutine合并解决方案中的轻微额外缓冲可能有助于吞吐量.但是,如果希望任何其他编写器被解除阻塞之前只有单个编写器被解除阻塞并且其值完全处理的语义,那么这只能通过反射解决方案来实现.

注意,如果不需要发送通道的"id"或者源通道永远不会关闭,则可以简化这两种方法.

Goroutine合并渠道:

// Process1 calls `fn` for each value received from any of the `chans`
// channels. The arguments to `fn` are the index of the channel the
// value came from and the string value. Process1 returns once all the
// channels are closed.
func Process1(chans []<-chan string, fn func(int, string)) {
    // Setup
    type item struct {
        int    // index of which channel this came from
        string // the actual string item
    }
    merged := make(chan item)
    var wg sync.WaitGroup
    wg.Add(len(chans))
    for i, c := range chans {
        go func(i int, c <-chan string) {
            // Reads and buffers a single item from `c` before
            // we even know if we can write to `merged`.
            //
            // Go doesn't provide a way to do something like:
            //     merged <- (<-c)
            // atomically, where we delay the read from `c`
            // until we can write to `merged`. The read from
            // `c` will always happen first (blocking as
            // required) and then we block on `merged` (with
            // either the above or the below syntax making
            // no difference).
            for s := range c {
                merged <- item{i, s}
            }
            // If/when this input channel is closed we just stop
            // writing to the merged channel and via the WaitGroup
            // let it be known there is one fewer channel active.
            wg.Done()
        }(i, c)
    }
    // One extra goroutine to watch for all the merging goroutines to
    // be finished and then close the merged channel.
    go func() {
        wg.Wait()
        close(merged)
    }()

    // "select-like" loop
    for i := range merged {
        // Process each value
        fn(i.int, i.string)
    }
}
Run Code Online (Sandbox Code Playgroud)

反思选择:

// Process2 is identical to Process1 except that it uses the reflect
// package to select and read from the input channels which guarantees
// there is only one value "in-flight" (i.e. when `fn` is called only
// a single send on a single channel will have succeeded, the rest will
// be blocked). It is approximately two orders of magnitude slower than
// Process1 (which is still insignificant if their is a significant
// delay between incoming values or if `fn` runs for a significant
// time).
func Process2(chans []<-chan string, fn func(int, string)) {
    // Setup
    cases := make([]reflect.SelectCase, len(chans))
    // `ids` maps the index within cases to the original `chans` index.
    ids := make([]int, len(chans))
    for i, c := range chans {
        cases[i] = reflect.SelectCase{
            Dir:  reflect.SelectRecv,
            Chan: reflect.ValueOf(c),
        }
        ids[i] = i
    }

    // Select loop
    for len(cases) > 0 {
        // A difference here from the merging goroutines is
        // that `v` is the only value "in-flight" that any of
        // the workers have sent. All other workers are blocked
        // trying to send the single value they have calculated
        // where-as the goroutine version reads/buffers a single
        // extra value from each worker.
        i, v, ok := reflect.Select(cases)
        if !ok {
            // Channel cases[i] has been closed, remove it
            // from our slice of cases and update our ids
            // mapping as well.
            cases = append(cases[:i], cases[i+1:]...)
            ids = append(ids[:i], ids[i+1:]...)
            continue
        }

        // Process each value
        fn(ids[i], v.String())
    }
}
Run Code Online (Sandbox Code Playgroud)

[ Go操场上的完整代码.]

  • 还值得注意的是,goroutines+channels 解决方案无法完成 `select` 或 `reflect.Select` 所做的所有事情。goroutine 将继续旋转,直到消耗完通道中的所有内容,因此没有明确的方法可以使“Process1”提前退出。如果您有多个读取器,也可能会出现问题,因为 goroutine 会缓冲每个通道中的一项,而使用“select”则不会发生这种情况。 (2认同)

avi*_*las 6

我们实际上对此主题进行了一些研究并找到了最佳解决方案。我们使用了reflect.Select一段时间,它很好地解决了这个问题。它比每个通道一个 goroutine 轻得多,并且操作简单。但不幸的是,它并没有真正支持大量的频道,这就是我们的情况,所以我们发现了一些有趣的东西并写了一篇关于它的博客文章: https: //cyolo.io/blog/how-we-enabled-dynamic-channel -在进行中按规模选择/

我将总结那里写的内容:我们为 32 以内的 2 次幂的每个结果静态创建了一批 select..case 语句,以及一个路由到不同情况并通过聚合通道聚合结果的函数。

此类批次的示例:

func select4(ctx context.Context, chanz []chan interface{}, res chan *r, r *r, i int) {
    select {
    case r.v, r.ok = <-chanz[0]:
        r.i = i + 0
        res <- r
    case r.v, r.ok = <-chanz[1]:
        r.i = i + 1
        res <- r
    case r.v, r.ok = <-chanz[2]:
        r.i = i + 2
        res <- r
    case r.v, r.ok = <-chanz[3]:
        r.i = i + 3
        res <- r
    case <-ctx.Done():
        break
    }
}
Run Code Online (Sandbox Code Playgroud)

以及使用这些类型的批次聚合来自任意数量通道的第一个结果的逻辑select..case

    for i < len(channels) {
        l = len(channels) - i
        switch {
        case l > 31 && maxBatchSize >= 32:
            go select32(ctx, channels[i:i+32], agg, rPool.Get().(*r), i)
            i += 32
        case l > 15 && maxBatchSize >= 16:
            go select16(ctx, channels[i:i+16], agg, rPool.Get().(*r), i)
            i += 16
        case l > 7 && maxBatchSize >= 8:
            go select8(ctx, channels[i:i+8], agg, rPool.Get().(*r), i)
            i += 8
        case l > 3 && maxBatchSize >= 4:
            go select4(ctx, channels[i:i+4], agg, rPool.Get().(*r), i)
            i += 4
        case l > 1 && maxBatchSize >= 2:
            go select2(ctx, channels[i:i+2], agg, rPool.Get().(*r), i)
            i += 2
        case l > 0:
            go select1(ctx, channels[i], agg, rPool.Get().(*r), i)
            i += 1
        }
    }
Run Code Online (Sandbox Code Playgroud)

  • 如果您想根据您对批次性质的了解进行优化,可以将“maxBatchSize”设置为配置。当我想测试哪个最大批量大小是最佳时,我提出了这种改进。我希望您从我分享的博客文章中理解原因。您可以在实施中删除它并决定您喜欢的最大批次。我们最终选择了 64,因为它对于数千个通道来说表现最佳,这就是我们的情况。顺便说一句,感谢您指出错字!我修复了它,并将在博客文章中进行修复。 (2认同)