Liz*_*ann 7 python optimization curve-fitting scipy
我有一组数据点,(下面的代码中的x和y),我试图通过我的点创建一个最适合的线性线.我在用scipy.optimize.curve_fit.我的代码产生一条线,但不是最合适的线.我试过给我的渐变和拦截使用函数模型参数,但每次它产生完全相同的行,不适合我的数据点.
蓝点是我的数据点,红线应该适合:

如果有人能指出我哪里出错了,我将非常感激:
import numpy as np
import matplotlib.pyplot as mpl
import scipy as sp
import scipy.optimize as opt
x=[1.0,2.5,3.5,4.0,1.1,1.8,2.2,3.7]
y=[6.008,15.722,27.130,33.772,5.257,9.549,11.098,28.828]
trialX = np.linspace(1.0,4.0,1000) #Trial values of x
def f(x,m,c): #Defining the function y(x)=(m*x)+c
return (x*m)+c
popt,pcov=opt.curve_fit(f,x,y) #Returning popt and pcov
ynew=f(trialX,*popt)
mpl.plot(x,y,'bo')
mpl.plot(trialX,ynew,'r-')
mpl.show()
Run Code Online (Sandbox Code Playgroud)
您也可以使用numpy.polyfit获得最合适的行:
import numpy as np
import matplotlib.pyplot as mpl
x=[1.0,2.5,3.5,4.0,1.1,1.8,2.2,3.7]
y=[6.008,15.722,27.130,33.772,5.257,9.549,11.098,28.828]
trialX = np.linspace(1.0,4.0,1000) #Trial values of x
#get the first order coefficients
fit = np.polyfit(x, y, 1)
#apply
ynew = trialX * fit[0] + fit[1]
mpl.plot(x,y,'bo')
mpl.plot(trialX,ynew,'r-')
mpl.show()
Run Code Online (Sandbox Code Playgroud)
这是输出: