Abh*_*jit 38 python dictionary
在python的库中,我们现在有两个字典的Python实现,它们dict在本机dict类型之上进行子类化.
Python的拥护者总是倾向于在可能的情况下defaultdict过度使用dict.setdefault.甚至医生引用了这一点This technique is simpler and faster than an equivalent technique using dict.setdefault():
以类似的方式,由于字典不维护顺序,因此在替代使用时,优选使用OrderedDict过度使用dict然后对项目进行排序.
在上述两种情况下,代码肯定更清晰,但代价是性能损失.
在回答和评论基于项目的问题python唯一列表之一时,我偶然发现dict使用defaultdict和时本机的性能损失OrderedDict.对于性能优势dict解决方案而言,数据的大小似乎也并非无关紧要.
我相信There should be one-- and preferably only one --obvious way to do it.,那么首选方式是什么?
daw*_*awg 59
没有一个单一的答案,也没有一个真实而且唯一的决定.在许多变量中,它取决于:
我不愿意概括,但这里有一些普遍性:
This technique is simpler and faster than an equivalent technique using dict.setdefault()完全错了.这取决于数据;setdefault 使用小数据集更快更简单;defaultdict 对于具有更多同质密钥集的更大数据集来说更快(即,添加元素后dict有多短);setdefault 具有更多异构密钥集的优势;OrderedDict 除了依赖于顺序的算法以外,所有情况下的速度都较慢,并且顺序不易重构或排序;dict操作来说,Python 3通常更快;OrderedDict).唯一的事实:它取决于!这三种技术都很有用.
以下是一些时序代码:
from __future__ import print_function
from collections import defaultdict
from collections import OrderedDict
try:
t=unichr(100)
except NameError:
unichr=chr
def f1(li):
'''defaultdict'''
d = defaultdict(list)
for k, v in li:
d[k].append(v)
return d.items()
def f2(li):
'''setdefault'''
d={}
for k, v in li:
d.setdefault(k, []).append(v)
return d.items()
def f3(li):
'''OrderedDict'''
d=OrderedDict()
for k, v in li:
d.setdefault(k, []).append(v)
return d.items()
if __name__ == '__main__':
import timeit
import sys
print(sys.version)
few=[('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
fmt='{:>12}: {:10.2f} micro sec/call ({:,} elements, {:,} keys)'
for tag, m, n in [('small',5,10000), ('medium',20,1000), ('bigger',1000,100), ('large',5000,10)]:
for f in [f1,f2,f3]:
s = few*m
res=timeit.timeit("{}(s)".format(f.__name__), setup="from __main__ import {}, s".format(f.__name__), number=n)
st=fmt.format(f.__doc__, res/n*1000000, len(s), len(f(s)))
print(st)
s = [(unichr(i%0x10000),i) for i in range(1,len(s)+1)]
res=timeit.timeit("{}(s)".format(f.__name__), setup="from __main__ import {}, s".format(f.__name__), number=n)
st=fmt.format(f.__doc__, res/n*1000000, len(s), len(f(s)))
print(st)
print()
Run Code Online (Sandbox Code Playgroud)
Python 2.7结果:
2.7.5 (default, Aug 25 2013, 00:04:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)]
defaultdict: 10.20 micro sec/call (25 elements, 3 keys)
defaultdict: 21.08 micro sec/call (25 elements, 25 keys)
setdefault: 13.41 micro sec/call (25 elements, 3 keys)
setdefault: 18.24 micro sec/call (25 elements, 25 keys)
OrderedDict: 49.47 micro sec/call (25 elements, 3 keys)
OrderedDict: 102.16 micro sec/call (25 elements, 25 keys)
defaultdict: 28.28 micro sec/call (100 elements, 3 keys)
defaultdict: 79.78 micro sec/call (100 elements, 100 keys)
setdefault: 45.68 micro sec/call (100 elements, 3 keys)
setdefault: 68.66 micro sec/call (100 elements, 100 keys)
OrderedDict: 117.78 micro sec/call (100 elements, 3 keys)
OrderedDict: 343.17 micro sec/call (100 elements, 100 keys)
defaultdict: 1123.60 micro sec/call (5,000 elements, 3 keys)
defaultdict: 4250.44 micro sec/call (5,000 elements, 5,000 keys)
setdefault: 2089.86 micro sec/call (5,000 elements, 3 keys)
setdefault: 3803.03 micro sec/call (5,000 elements, 5,000 keys)
OrderedDict: 4399.16 micro sec/call (5,000 elements, 3 keys)
OrderedDict: 16279.14 micro sec/call (5,000 elements, 5,000 keys)
defaultdict: 5609.39 micro sec/call (25,000 elements, 3 keys)
defaultdict: 25351.60 micro sec/call (25,000 elements, 25,000 keys)
setdefault: 10267.00 micro sec/call (25,000 elements, 3 keys)
setdefault: 24091.51 micro sec/call (25,000 elements, 25,000 keys)
OrderedDict: 22091.98 micro sec/call (25,000 elements, 3 keys)
OrderedDict: 94028.00 micro sec/call (25,000 elements, 25,000 keys)
Run Code Online (Sandbox Code Playgroud)
Python 3.3结果:
3.3.2 (default, May 21 2013, 11:50:47)
[GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))]
defaultdict: 8.58 micro sec/call (25 elements, 3 keys)
defaultdict: 21.18 micro sec/call (25 elements, 25 keys)
setdefault: 10.42 micro sec/call (25 elements, 3 keys)
setdefault: 14.58 micro sec/call (25 elements, 25 keys)
OrderedDict: 45.43 micro sec/call (25 elements, 3 keys)
OrderedDict: 92.69 micro sec/call (25 elements, 25 keys)
defaultdict: 20.47 micro sec/call (100 elements, 3 keys)
defaultdict: 77.48 micro sec/call (100 elements, 100 keys)
setdefault: 34.22 micro sec/call (100 elements, 3 keys)
setdefault: 54.86 micro sec/call (100 elements, 100 keys)
OrderedDict: 107.37 micro sec/call (100 elements, 3 keys)
OrderedDict: 318.98 micro sec/call (100 elements, 100 keys)
defaultdict: 714.70 micro sec/call (5,000 elements, 3 keys)
defaultdict: 3892.92 micro sec/call (5,000 elements, 5,000 keys)
setdefault: 1502.91 micro sec/call (5,000 elements, 3 keys)
setdefault: 2888.08 micro sec/call (5,000 elements, 5,000 keys)
OrderedDict: 3912.95 micro sec/call (5,000 elements, 3 keys)
OrderedDict: 14863.02 micro sec/call (5,000 elements, 5,000 keys)
defaultdict: 3649.02 micro sec/call (25,000 elements, 3 keys)
defaultdict: 22313.17 micro sec/call (25,000 elements, 25,000 keys)
setdefault: 7447.28 micro sec/call (25,000 elements, 3 keys)
setdefault: 18426.88 micro sec/call (25,000 elements, 25,000 keys)
OrderedDict: 19202.17 micro sec/call (25,000 elements, 3 keys)
OrderedDict: 85946.45 micro sec/call (25,000 elements, 25,000 keys)
Run Code Online (Sandbox Code Playgroud)
我觉得你的假设 - 只有一种更好的方式 - 并不成立.我看到至少有两个具有不同要求的案例:
在维护密集型代码中(例如,不断发展的实用程序类的选项解析器),我总是寻求更清晰的代码,以便其他人和我可以更轻松地实现新功能.性能并不重要,因为只处理少量(例如用户设置的字典).
而在
在数据处理任务中实现性能关键算法,我不介意为更快的执行编写更冗长的代码.如果算法不太可能改变,那么可读性稍差的代码就不会成为问题.