Mar*_*s D 11 r text-mining n-gram tm
我正在开始使用R中的tm软件包,所以请耐心等待,并为大文本墙做道歉.我创造了一个相当大的社会主义/共产主义宣传语料库,并希望提取新创造的政治术语(多个词,例如"斗争 - 批评 - 转型运动").
这是一个两步的问题,一个关于我的代码到目前为止,一个关于我应该如何继续.
第1步:为此,我想首先确定一些常见的ngram.但是我很早就陷入了困境.这是我一直在做的事情:
library(tm)
library(RWeka)
a <-Corpus(DirSource("/mycorpora/1965"), readerControl = list(language="lat")) # that dir is full of txt files
summary(a)
a <- tm_map(a, removeNumbers)
a <- tm_map(a, removePunctuation)
a <- tm_map(a , stripWhitespace)
a <- tm_map(a, tolower)
a <- tm_map(a, removeWords, stopwords("english"))
a <- tm_map(a, stemDocument, language = "english")
# everything works fine so far, so I start playing around with what I have
adtm <-DocumentTermMatrix(a)
adtm <- removeSparseTerms(adtm, 0.75)
inspect(adtm)
findFreqTerms(adtm, lowfreq=10) # find terms with a frequency higher than 10
findAssocs(adtm, "usa",.5) # just looking for some associations
findAssocs(adtm, "china",.5)
# ... and so on, and so forth, all of this works fine
Run Code Online (Sandbox Code Playgroud)
我加载到R中的语料库工作正常,我投入的大多数函数.我没有遇到任何问题从我的语料库创建TDM,找到频繁的单词,关联,创建单词云等等.但是当我尝试使用tm FAQ中概述的方法使用识别ngrams时,我显然在使用tdm构造函数时犯了一些错误:
# Trigram
TrigramTokenizer <- function(x) NGramTokenizer(x,
Weka_control(min = 3, max = 3))
tdm <- TermDocumentMatrix(a, control = list(tokenize = TrigramTokenizer))
inspect(tdm)
Run Code Online (Sandbox Code Playgroud)
我收到此错误消息:
Error in rep(seq_along(x), sapply(tflist, length)) :
invalid 'times' argument
In addition: Warning message:
In is.na(x) : is.na() applied to non-(list or vector) of type 'NULL'
Run Code Online (Sandbox Code Playgroud)
有任何想法吗?"a"不是正确的类/对象吗?我糊涂了.我认为这里有一个根本性的错误,但我没有看到它.:(
第2步:然后,当我将语料库与其他语料库进行比较时,我想确定明显过多的ngrams.例如,我可以将我的语料库与大型标准英语语料库进行比较.或者我创建可以相互比较的子集(例如苏联与中国共产党的术语).你对我这样做有什么建议吗?我应该研究哪些脚本/函数?只是一些想法或指针会很棒.
谢谢你的耐心!
我无法重现您的问题,您使用的是最新版本的R,tm,RWeka等吗?
require(tm)
a <- Corpus(DirSource("C:\\Downloads\\Only1965\\Only1965"))
summary(a)
a <- tm_map(a, removeNumbers)
a <- tm_map(a, removePunctuation)
a <- tm_map(a , stripWhitespace)
a <- tm_map(a, tolower)
a <- tm_map(a, removeWords, stopwords("english"))
# a <- tm_map(a, stemDocument, language = "english")
# I also got it to work with stemming, but it takes so long...
adtm <-DocumentTermMatrix(a)
adtm <- removeSparseTerms(adtm, 0.75)
inspect(adtm)
findFreqTerms(adtm, lowfreq=10) # find terms with a frequency higher than 10
findAssocs(adtm, "usa",.5) # just looking for some associations
findAssocs(adtm, "china",.5)
# Trigrams
require(RWeka)
TrigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 3, max = 3))
tdm <- TermDocumentMatrix(a, control = list(tokenize = TrigramTokenizer))
tdm <- removeSparseTerms(tdm, 0.75)
inspect(tdm[1:5,1:5])
Run Code Online (Sandbox Code Playgroud)
而这就是我得到的
A term-document matrix (5 terms, 5 documents)
Non-/sparse entries: 11/14
Sparsity : 56%
Maximal term length: 28
Weighting : term frequency (tf)
Docs
Terms PR1965-01.txt PR1965-02.txt PR1965-03.txt
†chinese press 0 0 0
†renmin ribao 0 1 1
— renmin ribao 2 5 2
“ chinese people 0 0 0
“renmin ribaoâ€\u009d editorial 0 1 0
etc.
Run Code Online (Sandbox Code Playgroud)
关于你的第二步,这里有一些指向有用的开头:
http://quantifyingmemory.blogspot.com/2013/02/mapping-significant-textual-differences.html http://tedunderwood.com/2012/08/14/where-to-start-with-text-mining/和这是他的代码https://dl.dropboxusercontent.com/u/4713959/Neuchatel/NassrProgram.R