小智 26
Algorithm ConvertInfixtoPrefix
Purpose: Convert an infix expression into a prefix expression. Begin
// Create operand and operator stacks as empty stacks.
Create OperandStack
Create OperatorStack
// While input expression still remains, read and process the next token.
while( not an empty input expression ) read next token from the input expression
// Test if token is an operand or operator
if ( token is an operand )
// Push operand onto the operand stack.
OperandStack.Push (token)
endif
// If it is a left parentheses or operator of higher precedence than the last, or the stack is empty,
else if ( token is '(' or OperatorStack.IsEmpty() or OperatorHierarchy(token) > OperatorHierarchy(OperatorStack.Top()) )
// push it to the operator stack
OperatorStack.Push ( token )
endif
else if( token is ')' )
// Continue to pop operator and operand stacks, building
// prefix expressions until left parentheses is found.
// Each prefix expression is push back onto the operand
// stack as either a left or right operand for the next operator.
while( OperatorStack.Top() not equal '(' )
OperatorStack.Pop(operator)
OperandStack.Pop(RightOperand)
OperandStack.Pop(LeftOperand)
operand = operator + LeftOperand + RightOperand
OperandStack.Push(operand)
endwhile
// Pop the left parthenses from the operator stack.
OperatorStack.Pop(operator)
endif
else if( operator hierarchy of token is less than or equal to hierarchy of top of the operator stack )
// Continue to pop operator and operand stack, building prefix
// expressions until the stack is empty or until an operator at
// the top of the operator stack has a lower hierarchy than that
// of the token.
while( !OperatorStack.IsEmpty() and OperatorHierarchy(token) lessThen Or Equal to OperatorHierarchy(OperatorStack.Top()) )
OperatorStack.Pop(operator)
OperandStack.Pop(RightOperand)
OperandStack.Pop(LeftOperand)
operand = operator + LeftOperand + RightOperand
OperandStack.Push(operand)
endwhile
// Push the lower precedence operator onto the stack
OperatorStack.Push(token)
endif
endwhile
// If the stack is not empty, continue to pop operator and operand stacks building
// prefix expressions until the operator stack is empty.
while( !OperatorStack.IsEmpty() ) OperatorStack.Pop(operator)
OperandStack.Pop(RightOperand)
OperandStack.Pop(LeftOperand)
operand = operator + LeftOperand + RightOperand
OperandStack.Push(operand)
endwhile
// Save the prefix expression at the top of the operand stack followed by popping // the operand stack.
print OperandStack.Top()
OperandStack.Pop()
End
Run Code Online (Sandbox Code Playgroud)
如果有什么关于什么是中缀和前缀意味着你不太明白,我强烈建议你重读你教科书的那一部分.如果你对这个问题给出了正确的答案,你就不会给自己任何好处,但仍然不理解这个概念.
算法方面,它非常简单.你自己就像电脑一样.首先按照计算的顺序在每个计算周围放置一个parens.然后(再次按照从第一次计算到最后的顺序),只需在左侧的表达式前面移动操作符.之后,您可以通过删除parens来简化.
(a–b)/c*(d + e – f / g)
前缀表示法(反向抛光有操作符最后一个,不清楚你的意思,但原理将完全相同):
(/ f g)(+ d e)(- (+ d e) (/ f g))(- a b)(/ (- a b) c)(* (/ (- a b) c) (- (+ d e) (/ f g)))Tho*_*ini -1
也许您正在谈论逆波兰表示法?如果是,您可以在维基百科上找到非常详细的转换步骤示例;如果不是,我不知道你在问什么:(
您可能还想阅读我对另一个问题的回答,我在其中提供了这样的实现:C++简单操作(+,-,/,*)评估类
| 归档时间: |
|
| 查看次数: |
105562 次 |
| 最近记录: |