来自DMCichlet分布的采样中来自PyMC的FloatingPointError

Cup*_*tor 15 python random floating-point sampling pymc

在使用装饰器来定义"指数随机变量的对数"的随机对象不成功之后,我决定使用手动编写这个新分布的代码pymc.stochastic_from_dist.我想在这里实现的模型(第一个模型): 在此输入图像描述

现在,当我尝试使用MCMC Metropolis和正态分布作为提议对日志(alpha)进行采样时(如下图所示,作为采样方法),我收到以下错误:

  File "/Library/Python/2.7/site-packages/pymc/distributions.py", line 980, in rdirichlet
    return (gammas[0]/gammas[0].sum())[:-1]

FloatingPointError: invalid value encountered in divide
Run Code Online (Sandbox Code Playgroud)

虽然采样不会出错的时间,但采样直方图与本文中的采样直方图相匹配.我的分层模型是:

"""
A Hierarchical Bayesian Model for Bags of Marbles

logalpha ~ logarithm of an exponential distribution with parameter lambd
beta ~ Dirichlet([black and white ball proportions]:vector of 1's)
theta ~ Dirichlet(alpha*beta(vector))

"""

import numpy as np
import pymc
from scipy.stats import expon
lambd=1.
__all__=['alpha','beta','theta','logalpha']
#------------------------------------------------------------
# Set up pyMC model: logExponential
# 1 parameter: (alpha)

def logExp_like(x,explambda):
    """log-likelihood for logExponential"""
    return -lambd*np.exp(x)+x
def rlogexp(explambda, size=None):
    """random variable from logExponential"""
    sample=np.random.exponential(explambda,size)
    logSample=np.log(sample)
    return logSample
logExponential=pymc.stochastic_from_dist('logExponential',logp=logExp_like,
                                          random=rlogexp,
                                          dtype=np.float,
                                          mv=False)
#------------------------------------------------------------
#Defining model parameteres alpha and beta.
beta=pymc.Dirichlet('beta',theta=[1,1])
logalpha=logExponential('logalpha',lambd)

@pymc.deterministic(plot=False)
def multipar(a=logalpha,b=beta):
    out=np.empty(2)
    out[0]=(np.exp(a)*b)
    out[1]=(np.exp(a)*(1-b))
    return out
theta=pymc.Dirichlet('theta',theta=multipar)
Run Code Online (Sandbox Code Playgroud)

我的测试抽样代码是:

from pymc import Metropolis
from pymc import MCMC
from matplotlib import pyplot as plt
import HBM
import numpy as np
import pymc
import scipy
M=MCMC(HBM)
M.use_step_method(Metropolis,HBM.logalpha, proposal_sd=1.,proposal_distribution='Normal')
M.sample(iter=1000,burn=200)
Run Code Online (Sandbox Code Playgroud)

当我在distributions.py的第978行检查传递给gamma分布的theta的值时,我看到没有零但是值很小!所以我不知道如何防止这个浮点错误?

jaa*_*aap 0

如果你得到的数字确实很小,那么对于浮点数来说可能太小了。这通常也是对数要避免的。如果用的话怎么办dtype=np.float64