Abd*_*ؤمن 2 python matplotlib linear-algebra
我有一个带有三个方程的线性系统:
x 1 - 2x 2 + x 3 = 0
2x 2 - 8x 3 = 8
-4x 1 + 5x 2 + 9x 3 = -9
解集是(29,16,3),它是这些平面交叉处的点.
希望是否有人可以使用Matplotlib在3D空间中绘制这些平面,以清楚地显示问题.
car*_*sdc 11
你的第三个等式说:
-4x + 5y + 9z - 9 = 0
或者一般来说,你的等式是
ax + by + cz + d = 0
正常是(a,b,c)
将其插入绘图库中,该绘图库采用法向量和平面上的点,并执行3次(每个平面一个).
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
point1 = np.array([0,0,0])
normal1 = np.array([1,-2,1])
point2 = np.array([0,-4,0])
normal2 = np.array([0,2,-8])
point3 = np.array([0,0,1])
normal3 = np.array([-4,5,9])
# a plane is a*x+b*y+c*z+d=0
# [a,b,c] is the normal. Thus, we have to calculate
# d and we're set
d1 = -np.sum(point1*normal1)# dot product
d2 = -np.sum(point2*normal2)# dot product
d3 = -np.sum(point3*normal3)# dot product
# create x,y
xx, yy = np.meshgrid(range(30), range(30))
# calculate corresponding z
z1 = (-normal1[0]*xx - normal1[1]*yy - d1)*1./normal1[2]
z2 = (-normal2[0]*xx - normal2[1]*yy - d2)*1./normal2[2]
z3 = (-normal3[0]*xx - normal3[1]*yy - d3)*1./normal3[2]
# plot the surface
plt3d = plt.figure().gca(projection='3d')
plt3d.plot_surface(xx,yy,z1, color='blue')
plt3d.plot_surface(xx,yy,z2, color='yellow')
plt3d.plot_surface(xx,yy,z3, color='cyan')
plt.show()
Run Code Online (Sandbox Code Playgroud)
