sil*_*ado 378
dataframe["period"] = dataframe["Year"].map(str) + dataframe["quarter"]
Run Code Online (Sandbox Code Playgroud)
Rus*_*uss 244
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)
Run Code Online (Sandbox Code Playgroud)
产生此数据帧
Year quarter period
0 2014 q1 2014q1
1 2015 q2 2015q2
Run Code Online (Sandbox Code Playgroud)
通过替换df[['Year', 'quarter']]数据帧的任何列切片,此方法可以概括为任意数量的字符串列,例如df.iloc[:,0:2].apply(lambda x: ''.join(x), axis=1).
您可以在此处查看有关apply()方法的更多信息
Max*_*axU 228
[''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
Run Code Online (Sandbox Code Playgroud)
或略慢但更紧凑:
df.Year.str.cat(df.quarter)
Run Code Online (Sandbox Code Playgroud)
df['Year'].astype(str) + df['quarter']
Run Code Online (Sandbox Code Playgroud)
更新:时序图Pandas 0.23.4
让我们在200K行DF上测试它:
In [250]: df
Out[250]:
Year quarter
0 2014 q1
1 2015 q2
In [251]: df = pd.concat([df] * 10**5)
In [252]: df.shape
Out[252]: (200000, 2)
Run Code Online (Sandbox Code Playgroud)
更新:使用Pandas 0.19.0的新时间
没有CPU/GPU优化的时序(从最快到最慢排序):
In [107]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 131 ms per loop
In [106]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 161 ms per loop
In [108]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 189 ms per loop
In [109]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 567 ms per loop
In [110]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 584 ms per loop
In [111]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 24.7 s per loop
Run Code Online (Sandbox Code Playgroud)
使用CPU/GPU优化的时序:
In [113]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 53.3 ms per loop
In [114]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 65.5 ms per loop
In [115]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 79.9 ms per loop
In [116]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop
In [117]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop
In [118]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 9.38 s per loop
Run Code Online (Sandbox Code Playgroud)
由@ anton-vbr回答贡献
Leo*_*ael 145
该方法cat()的的.str访问可以很好地表现这一点:
>>> import pandas as pd
>>> df = pd.DataFrame([["2014", "q1"],
... ["2015", "q3"]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 q1
1 2015 q3
>>> df['Period'] = df.Year.str.cat(df.Quarter)
>>> print(df)
Year Quarter Period
0 2014 q1 2014q1
1 2015 q3 2015q3
Run Code Online (Sandbox Code Playgroud)
cat() 甚至允许你添加一个分隔符,例如,假设你只有年份和期间的整数,你可以这样做:
>>> import pandas as pd
>>> df = pd.DataFrame([[2014, 1],
... [2015, 3]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 1
1 2015 3
>>> df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q')
>>> print(df)
Year Quarter Period
0 2014 1 2014q1
1 2015 3 2015q3
Run Code Online (Sandbox Code Playgroud)
连接多个列只是传递一个系列列表或一个包含除第一列之外的所有列的数据帧作为str.cat()在第一列(系列)上调用的参数:
>>> df = pd.DataFrame(
... [['USA', 'Nevada', 'Las Vegas'],
... ['Brazil', 'Pernambuco', 'Recife']],
... columns=['Country', 'State', 'City'],
... )
>>> df['AllTogether'] = df['Country'].str.cat(df[['State', 'City']], sep=' - ')
>>> print(df)
Country State City AllTogether
0 USA Nevada Las Vegas USA - Nevada - Las Vegas
1 Brazil Pernambuco Recife Brazil - Pernambuco - Recife
Run Code Online (Sandbox Code Playgroud)
请注意,如果您的pandas dataframe/series具有空值,则需要包含参数na_rep以使用字符串替换NaN值,否则组合列将默认为NaN.
Bil*_*ale 30
这次使用lamba函数和string.format().
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
print df
Quarter Year
0 q1 2014
1 q2 2015
Quarter Year YearQuarter
0 q1 2014 2014q1
1 q2 2015 2015q2
Run Code Online (Sandbox Code Playgroud)
这允许您根据需要使用非字符串并重新格式化值.
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]})
print df.dtypes
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1)
print df
Quarter int64
Year object
dtype: object
Quarter Year
0 1 2014
1 2 2015
Quarter Year YearQuarter
0 1 2014 2014q1
1 2 2015 2015q2
Run Code Online (Sandbox Code Playgroud)
Ant*_*pov 12
虽然@silvado答案是好的,如果你改变df.map(str)到df.astype(str)它会更快:
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop
In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop
Run Code Online (Sandbox Code Playgroud)
Sam*_*Nde 12
让我们假设你的 dataframe是df柱子Year和Quarter.
import pandas as pd
df = pd.DataFrame({'Quarter':'q1 q2 q3 q4'.split(), 'Year':'2000'})
Run Code Online (Sandbox Code Playgroud)
假设我们想要查看数据帧;
df
>>> Quarter Year
0 q1 2000
1 q2 2000
2 q3 2000
3 q4 2000
Run Code Online (Sandbox Code Playgroud)
最后,连接Year和Quarter如下.
df['Period'] = df['Year'] + ' ' + df['Quarter']
Run Code Online (Sandbox Code Playgroud)
您现在print df 可以查看生成的数据框.
df
>>> Quarter Year Period
0 q1 2000 2000 q1
1 q2 2000 2000 q2
2 q3 2000 2000 q3
3 q4 2000 2000 q4
Run Code Online (Sandbox Code Playgroud)
如果您不想要年份和季度之间的空间,只需将其删除;
df['Period'] = df['Year'] + df['Quarter']
Run Code Online (Sandbox Code Playgroud)
小智 11
当您的数据插入到数据框中时,此命令应该可以解决您的问题:
df['period'] = df[['Year', 'quarter']].apply(lambda x: ' '.join(x.astype(str)), axis=1)
Run Code Online (Sandbox Code Playgroud)
Pob*_*huk 11
您可以使用 lambda:
combine_lambda = lambda x: '{}{}'.format(x.Year, x.quarter)
Run Code Online (Sandbox Code Playgroud)
然后将其用于创建新列:
df['period'] = df.apply(combine_lambda, axis = 1)
Run Code Online (Sandbox Code Playgroud)
Ped*_*rte 10
这是一个我发现非常通用的实现:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame([[0, 'the', 'quick', 'brown'],
...: [1, 'fox', 'jumps', 'over'],
...: [2, 'the', 'lazy', 'dog']],
...: columns=['c0', 'c1', 'c2', 'c3'])
In [3]: def str_join(df, sep, *cols):
...: from functools import reduce
...: return reduce(lambda x, y: x.astype(str).str.cat(y.astype(str), sep=sep),
...: [df[col] for col in cols])
...:
In [4]: df['cat'] = str_join(df, '-', 'c0', 'c1', 'c2', 'c3')
In [5]: df
Out[5]:
c0 c1 c2 c3 cat
0 0 the quick brown 0-the-quick-brown
1 1 fox jumps over 1-fox-jumps-over
2 2 the lazy dog 2-the-lazy-dog
Run Code Online (Sandbox Code Playgroud)
效率更高
def concat_df_str1(df):
""" run time: 1.3416s """
return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
Run Code Online (Sandbox Code Playgroud)
这是一个时间测试:
import numpy as np
import pandas as pd
from time import time
def concat_df_str1(df):
""" run time: 1.3416s """
return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
def concat_df_str2(df):
""" run time: 5.2758s """
return df.astype(str).sum(axis=1)
def concat_df_str3(df):
""" run time: 5.0076s """
df = df.astype(str)
return df[0] + df[1] + df[2] + df[3] + df[4] + \
df[5] + df[6] + df[7] + df[8] + df[9]
def concat_df_str4(df):
""" run time: 7.8624s """
return df.astype(str).apply(lambda x: ''.join(x), axis=1)
def main():
df = pd.DataFrame(np.zeros(1000000).reshape(100000, 10))
df = df.astype(int)
time1 = time()
df_en = concat_df_str4(df)
print('run time: %.4fs' % (time() - time1))
print(df_en.head(10))
if __name__ == '__main__':
main()
Run Code Online (Sandbox Code Playgroud)
final,当使用sum(concat_df_str2)时,结果不是简单的concat,它将转换为整数.
此解决方案使用中间步骤将 DataFrame 的两列压缩为包含值列表的单个列。这不仅适用于字符串,而且适用于所有类型的列数据类型
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['list']=df[['Year','quarter']].values.tolist()
df['period']=df['list'].apply(''.join)
print(df)
Run Code Online (Sandbox Code Playgroud)
结果:
Year quarter list period
0 2014 q1 [2014, q1] 2014q1
1 2015 q2 [2015, q2] 2015q2
Run Code Online (Sandbox Code Playgroud)
归纳为多列,为什么不这样做:
columns = ['whatever', 'columns', 'you', 'choose']
df['period'] = df[columns].astype(str).sum(axis=1)
Run Code Online (Sandbox Code Playgroud)
您问题的简单答案。
Year quarter
0 2000 q1
1 2000 q2
> final_string = df['Year'] + '' + df['quarter']
> print(final_string)
2000q1
2000q2
Run Code Online (Sandbox Code Playgroud)
使用zip甚至可以更快:
df["period"] = [''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
Run Code Online (Sandbox Code Playgroud)
图形:
import pandas as pd
import numpy as np
import timeit
import matplotlib.pyplot as plt
from collections import defaultdict
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
myfuncs = {
"df['Year'].astype(str) + df['quarter']":
lambda: df['Year'].astype(str) + df['quarter'],
"df['Year'].map(str) + df['quarter']":
lambda: df['Year'].map(str) + df['quarter'],
"df.Year.str.cat(df.quarter)":
lambda: df.Year.str.cat(df.quarter),
"df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)":
lambda: df.loc[:, ['Year','quarter']].astype(str).sum(axis=1),
"df[['Year','quarter']].astype(str).sum(axis=1)":
lambda: df[['Year','quarter']].astype(str).sum(axis=1),
"df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)":
lambda: df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1),
"[''.join(i) for i in zip(dataframe['Year'].map(str),dataframe['quarter'])]":
lambda: [''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
}
d = defaultdict(dict)
step = 10
cont = True
while cont:
lendf = len(df); print(lendf)
for k,v in myfuncs.items():
iters = 1
t = 0
while t < 0.2:
ts = timeit.repeat(v, number=iters, repeat=3)
t = min(ts)
iters *= 10
d[k][lendf] = t/iters
if t > 2: cont = False
df = pd.concat([df]*step)
pd.DataFrame(d).plot().legend(loc='upper center', bbox_to_anchor=(0.5, -0.15))
plt.yscale('log'); plt.xscale('log'); plt.ylabel('seconds'); plt.xlabel('df rows')
plt.show()
Run Code Online (Sandbox Code Playgroud)
这是我对上述解决方案的总结,这些解决方案使用列值之间的分隔符将具有 int 和 str 值的两列连接/组合到一个新列中。三种解决方案可用于此目的。
# be cautious about the separator, some symbols may cause "SyntaxError: EOL while scanning string literal".
# e.g. ";;" as separator would raise the SyntaxError
separator = "&&"
# pd.Series.str.cat() method does not work to concatenate / combine two columns with int value and str value. This would raise "AttributeError: Can only use .cat accessor with a 'category' dtype"
df["period"] = df["Year"].map(str) + separator + df["quarter"]
df["period"] = df[['Year','quarter']].apply(lambda x : '{} && {}'.format(x[0],x[1]), axis=1)
df["period"] = df.apply(lambda x: f'{x["Year"]} && {x["quarter"]}', axis=1)
Run Code Online (Sandbox Code Playgroud)
我的看法....
listofcols = ['col1','col2','col3']
df['combined_cols'] = ''
for column in listofcols:
df['combined_cols'] = df['combined_cols'] + ' ' + df[column]
'''
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
599022 次 |
| 最近记录: |