JEq*_*hua 13 performance numpy matrix-multiplication python-2.7 numba
我一直在玩numba和numexpr试图加速一个简单的元素矩阵乘法.我无法获得更好的结果,它们基本上(速度方向)等同于numpys乘法函数.这个地区有人有运气吗?我使用numba和numexpr是错误的(我对此很新)或者这是一个不好的方法来尝试加快速度.这是一个可重现的代码,谢谢你的高级:
import numpy as np
from numba import autojit
import numexpr as ne
a=np.random.rand(10,5000000)
# numpy
multiplication1 = np.multiply(a,a)
# numba
def multiplix(X,Y):
M = X.shape[0]
N = X.shape[1]
D = np.empty((M, N), dtype=np.float)
for i in range(M):
for j in range(N):
D[i,j] = X[i, j] * Y[i, j]
return D
mul = autojit(multiplix)
multiplication2 = mul(a,a)
# numexpr
def numexprmult(X,Y):
M = X.shape[0]
N = X.shape[1]
return ne.evaluate("X * Y")
multiplication3 = numexprmult(a,a)
Run Code Online (Sandbox Code Playgroud)
Ale*_*ogt 11
elementwise.F90:
subroutine elementwise( a, b, c, M, N ) bind(c, name='elementwise')
use iso_c_binding, only: c_float, c_int
integer(c_int),intent(in) :: M, N
real(c_float), intent(in) :: a(M, N), b(M, N)
real(c_float), intent(out):: c(M, N)
integer :: i,j
forall (i=1:M,j=1:N)
c(i,j) = a(i,j) * b(i,j)
end forall
end subroutine
Run Code Online (Sandbox Code Playgroud)
elementwise.py:
from ctypes import CDLL, POINTER, c_int, c_float
import numpy as np
import time
fortran = CDLL('./elementwise.so')
fortran.elementwise.argtypes = [ POINTER(c_float),
POINTER(c_float),
POINTER(c_float),
POINTER(c_int),
POINTER(c_int) ]
# Setup
M=10
N=5000000
a = np.empty((M,N), dtype=c_float)
b = np.empty((M,N), dtype=c_float)
c = np.empty((M,N), dtype=c_float)
a[:] = np.random.rand(M,N)
b[:] = np.random.rand(M,N)
# Fortran call
start = time.time()
fortran.elementwise( a.ctypes.data_as(POINTER(c_float)),
b.ctypes.data_as(POINTER(c_float)),
c.ctypes.data_as(POINTER(c_float)),
c_int(M), c_int(N) )
stop = time.time()
print 'Fortran took ',stop - start,'seconds'
# Numpy
start = time.time()
c = np.multiply(a,b)
stop = time.time()
print 'Numpy took ',stop - start,'seconds'
Run Code Online (Sandbox Code Playgroud)
我使用编译了Fortran文件
gfortran -O3 -funroll-loops -ffast-math -floop-strip-mine -shared -fPIC \
-o elementwise.so elementwise.F90
Run Code Online (Sandbox Code Playgroud)
输出产生~10%的加速:
$ python elementwise.py
Fortran took 0.213667869568 seconds
Numpy took 0.230120897293 seconds
$ python elementwise.py
Fortran took 0.209784984589 seconds
Numpy took 0.231616973877 seconds
$ python elementwise.py
Fortran took 0.214708089828 seconds
Numpy took 0.25369310379 seconds
Run Code Online (Sandbox Code Playgroud)
你是如何做你的时间的?
随机数组的创建占用了计算的大部分,如果将它包含在时间中,您几乎看不到结果的任何真正差异,但是,如果您预先创建它,您实际上可以比较这些方法.
这是我的结果,我一直在看你所看到的.numpy和numba给出了相同的结果(numba更快一点.)
(我没有可用的mathxpr)
In [1]: import numpy as np
In [2]: from numba import autojit
In [3]: a=np.random.rand(10,5000000)
In [4]: %timeit multiplication1 = np.multiply(a,a)
10 loops, best of 3: 90 ms per loop
In [5]: # numba
In [6]: def multiplix(X,Y):
...: M = X.shape[0]
...: N = X.shape[1]
...: D = np.empty((M, N), dtype=np.float)
...: for i in range(M):
...: for j in range(N):
...: D[i,j] = X[i, j] * Y[i, j]
...: return D
...:
In [7]: mul = autojit(multiplix)
In [26]: %timeit multiplication1 = np.multiply(a,a)
10 loops, best of 3: 182 ms per loop
In [27]: %timeit multiplication1 = np.multiply(a,a)
10 loops, best of 3: 185 ms per loop
In [28]: %timeit multiplication1 = np.multiply(a,a)
10 loops, best of 3: 181 ms per loop
In [29]: %timeit multiplication2 = mul(a,a)
10 loops, best of 3: 179 ms per loop
In [30]: %timeit multiplication2 = mul(a,a)
10 loops, best of 3: 180 ms per loop
In [31]: %timeit multiplication2 = mul(a,a)
10 loops, best of 3: 178 ms per loop
Run Code Online (Sandbox Code Playgroud)
更新:我使用了最新版本的numba,刚从源代码编译:'0.11.0-3-gea20d11-dirty'
我用Fedora 19中的默认numpy测试了这个,'1.7.1' 和从源编译的numpy'1.6.1'链接到:
Update3 我之前的结果当然不正确,我在内循环中返回D,因此跳过了90%的计算.
这为ali_m的假设提供了更多的证据,即很难比已经非常优化的c代码做得更好.
但是,如果你想做一些更复杂的事情,例如,
np.sqrt(((X[:, None, :] - X) ** 2).sum(-1))
Run Code Online (Sandbox Code Playgroud)
我可以重现Jake Vanderplas得到的数字:
In [14]: %timeit pairwise_numba(X)
10000 loops, best of 3: 92.6 us per loop
In [15]: %timeit pairwise_numpy(X)
1000 loops, best of 3: 662 us per loop
Run Code Online (Sandbox Code Playgroud)
所以看起来你做的事情到目前为止已经被numpy优化了很难做得更好.