NLTK - Bigram的计数频率

jai*_*inp 18 python nlp nltk

这是一个Python和NLTK新手问题.

我想找到一起发生10次以上并且具有最高PMI的双字母组合的频率.

为此,我正在使用此代码

def get_list_phrases(text):

    tweet_phrases = []

    for tweet in text:
        tweet_words = tweet.split()
        tweet_phrases.extend(tweet_words)


    bigram_measures = nltk.collocations.BigramAssocMeasures()
    finder = BigramCollocationFinder.from_words(tweet_phrases,window_size = 13)
    finder.apply_freq_filter(10)
    finder.nbest(bigram_measures.pmi,20)  

    for k,v in finder.ngram_fd.items():
      print(k,v)
Run Code Online (Sandbox Code Playgroud)

但是,这并不会将结果限制在前20位.我看到频率<10的结果.我是Python世界的新手.

有人可以指出如何修改它只获得前20名.

谢谢

use*_*743 23

问题在于您尝试使用的方式apply_freq_filter.我们正在讨论关于单词搭配的问题.如您所知,单词搭配是关于单词之间的依赖关系.该BigramCollocationFinder班由一个名为类继承AbstractCollocationFinder和功能apply_freq_filter属于这一类.apply_freq_filter不应该完全删除一些单词搭配,而是在某些其他函数尝试访问列表时提供过滤的匹配列表.

那为什么呢?想象一下,如果过滤搭配只是删除它们,那么就有许多概率测量,例如似然比或PMI本身(计算一个词相对于语料库中其他词的概率),这些概率测量在从随机位置删除单词后将无法正常工作在给定的语料库中.通过从给定的单词列表中删除一些搭配,将禁用许多潜在的功能和计算.此外,在删除之前计算所有这些度量将带来巨大的计算开销,用户可能根本不需要.

现在,问题是如何正确使用apply_freq_filter function?有几种方法.在下文中,我将展示问题及其解决方案.

让我们定义一个示例语料库并将其拆分为与您所做的类似的单词列表:

tweet_phrases = "I love iphone . I am so in love with iphone . iphone is great . samsung is great . iphone sucks. I really really love iphone cases. samsung can never beat iphone . samsung is better than apple"
from nltk.collocations import *
import nltk
Run Code Online (Sandbox Code Playgroud)

为了进行实验,我将窗口大小设置为3:

finder = BigramCollocationFinder.from_words(tweet_phrases.split(), window_size = 3)
finder1 = BigramCollocationFinder.from_words(tweet_phrases.split(), window_size = 3)
Run Code Online (Sandbox Code Playgroud)

请注意,为了便于比较,我只使用过滤器finder1:

finder1.apply_freq_filter(2)
bigram_measures = nltk.collocations.BigramAssocMeasures()
Run Code Online (Sandbox Code Playgroud)

现在,如果我写:

for k,v in finder.ngram_fd.items():
  print(k,v)
Run Code Online (Sandbox Code Playgroud)

输出是:

(('.', 'is'), 3)
(('iphone', '.'), 3)
(('love', 'iphone'), 3)
(('.', 'iphone'), 2)
(('.', 'samsung'), 2)
(('great', '.'), 2)
(('iphone', 'I'), 2)
(('iphone', 'samsung'), 2)
(('is', '.'), 2)
(('is', 'great'), 2)
(('samsung', 'is'), 2)
(('.', 'I'), 1)
(('.', 'am'), 1)
(('.', 'sucks.'), 1)
(('I', 'am'), 1)
(('I', 'iphone'), 1)
(('I', 'love'), 1)
(('I', 'really'), 1)
(('I', 'so'), 1)
(('am', 'in'), 1)
(('am', 'so'), 1)
(('beat', '.'), 1)
(('beat', 'iphone'), 1)
(('better', 'apple'), 1)
(('better', 'than'), 1)
(('can', 'beat'), 1)
(('can', 'never'), 1)
(('cases.', 'can'), 1)
(('cases.', 'samsung'), 1)
(('great', 'iphone'), 1)
(('great', 'samsung'), 1)
(('in', 'love'), 1)
(('in', 'with'), 1)
(('iphone', 'cases.'), 1)
(('iphone', 'great'), 1)
(('iphone', 'is'), 1)
(('iphone', 'sucks.'), 1)
(('is', 'better'), 1)
(('is', 'than'), 1)
(('love', '.'), 1)
(('love', 'cases.'), 1)
(('love', 'with'), 1)
(('never', 'beat'), 1)
(('never', 'iphone'), 1)
(('really', 'iphone'), 1)
(('really', 'love'), 1)
(('samsung', 'better'), 1)
(('samsung', 'can'), 1)
(('samsung', 'great'), 1)
(('samsung', 'never'), 1)
(('so', 'in'), 1)
(('so', 'love'), 1)
(('sucks.', 'I'), 1)
(('sucks.', 'really'), 1)
(('than', 'apple'), 1)
(('with', '.'), 1)
(('with', 'iphone'), 1)
Run Code Online (Sandbox Code Playgroud)

如果我写同样的话,我会得到相同的结果finder1.因此,乍一看过滤器不起作用.但是,看看它是如何工作的:诀窍是使用score_ngrams.

如果我使用score_ngramsfinder,这将是:

finder.score_ngrams (bigram_measures.pmi)
Run Code Online (Sandbox Code Playgroud)

输出是:

[(('am', 'in'), 5.285402218862249), (('am', 'so'), 5.285402218862249), (('better', 'apple'), 5.285402218862249), (('better', 'than'), 5.285402218862249), (('can', 'beat'), 5.285402218862249), (('can', 'never'), 5.285402218862249), (('cases.', 'can'), 5.285402218862249), (('in', 'with'), 5.285402218862249), (('never', 'beat'), 5.285402218862249), (('so', 'in'), 5.285402218862249), (('than', 'apple'), 5.285402218862249), (('sucks.', 'really'), 4.285402218862249), (('is', 'great'), 3.7004397181410926), (('I', 'am'), 3.7004397181410926), (('I', 'so'), 3.7004397181410926), (('cases.', 'samsung'), 3.7004397181410926), (('in', 'love'), 3.7004397181410926), (('is', 'better'), 3.7004397181410926), (('is', 'than'), 3.7004397181410926), (('love', 'cases.'), 3.7004397181410926), (('love', 'with'), 3.7004397181410926), (('samsung', 'better'), 3.7004397181410926), (('samsung', 'can'), 3.7004397181410926), (('samsung', 'never'), 3.7004397181410926), (('so', 'love'), 3.7004397181410926), (('sucks.', 'I'), 3.7004397181410926), (('samsung', 'is'), 3.115477217419936), (('.', 'am'), 2.9634741239748865), (('.', 'sucks.'), 2.9634741239748865), (('beat', '.'), 2.9634741239748865), (('with', '.'), 2.9634741239748865), (('.', 'is'), 2.963474123974886), (('great', '.'), 2.963474123974886), (('love', 'iphone'), 2.7004397181410926), (('I', 'really'), 2.7004397181410926), (('beat', 'iphone'), 2.7004397181410926), (('great', 'samsung'), 2.7004397181410926), (('iphone', 'cases.'), 2.7004397181410926), (('iphone', 'sucks.'), 2.7004397181410926), (('never', 'iphone'), 2.7004397181410926), (('really', 'love'), 2.7004397181410926), (('samsung', 'great'), 2.7004397181410926), (('with', 'iphone'), 2.7004397181410926), (('.', 'samsung'), 2.37851162325373), (('is', '.'), 2.37851162325373), (('iphone', 'I'), 2.1154772174199366), (('iphone', 'samsung'), 2.1154772174199366), (('I', 'love'), 2.115477217419936), (('iphone', '.'), 1.963474123974886), (('great', 'iphone'), 1.7004397181410922), (('iphone', 'great'), 1.7004397181410922), (('really', 'iphone'), 1.7004397181410922), (('.', 'iphone'), 1.37851162325373), (('.', 'I'), 1.37851162325373), (('love', '.'), 1.37851162325373), (('I', 'iphone'), 1.1154772174199366), (('iphone', 'is'), 1.1154772174199366)]
Run Code Online (Sandbox Code Playgroud)

现在注意当我计算finder1过滤到频率为2 的相同时会发生什么:

finder1.score_ngrams(bigram_measures.pmi)
Run Code Online (Sandbox Code Playgroud)

和输出:

[(('is', 'great'), 3.7004397181410926), (('samsung', 'is'), 3.115477217419936), (('.', 'is'), 2.963474123974886), (('great', '.'), 2.963474123974886), (('love', 'iphone'), 2.7004397181410926), (('.', 'samsung'), 2.37851162325373), (('is', '.'), 2.37851162325373), (('iphone', 'I'), 2.1154772174199366), (('iphone', 'samsung'), 2.1154772174199366), (('iphone', '.'), 1.963474123974886), (('.', 'iphone'), 1.37851162325373)]
Run Code Online (Sandbox Code Playgroud)

请注意,此列表中不存在频率小于2的所有搭配; 这正是你要找的结果.所以过滤器已经工作了.此外,文档提供了有关此问题的最小提示.

我希望这已经回答了你的问题.否则,请告诉我.

免责声明:如果您主要处理推文,窗口大小为13太大了.如果您注意到,在我的示例语料库中,我的示例推文的大小太小,以至于应用窗口大小为13会导致找到无关的搭配.