在python中快速找到峰值并进行质心控制

Dan*_*ein 7 python numpy image-processing matplotlib scipy

我正在尝试在python中开发一个快速算法,用于在图像中找到峰值,然后找到这些峰值的质心.我使用scipy.ndimage.label和ndimage.find_objects编写了以下代码来定位对象.这似乎是代码中的瓶颈,在500x500图像中定位20个对象大约需要7毫秒.我想将其扩展到更大的(2000x2000)图像,但随后时间增加到几乎100毫秒.所以,我想知道是否有更快的选择.

这是我到目前为止的代码,它有效,但速度很慢.首先,我使用一些高斯峰来模拟我的数据.这部分很慢,但实际上我将使用真实数据,所以我不太关心加速那部分.我希望能够很快找到峰值.

import time
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage
import matplotlib.patches 

plt.figure(figsize=(10,10))
ax1 = plt.subplot(221)
ax2 = plt.subplot(222)
ax3 = plt.subplot(223)
ax4 = plt.subplot(224)

size        = 500 #width and height of image in pixels
peak_height = 100 # define the height of the peaks
num_peaks   = 20
noise_level = 50
threshold   = 60

np.random.seed(3)

#set up a simple, blank image (Z)
x = np.linspace(0,size,size)
y = np.linspace(0,size,size)

X,Y = np.meshgrid(x,y)
Z = X*0

#now add some peaks
def gaussian(X,Y,xo,yo,amp=100,sigmax=4,sigmay=4):
    return amp*np.exp(-(X-xo)**2/(2*sigmax**2) - (Y-yo)**2/(2*sigmay**2))

for xo,yo in size*np.random.rand(num_peaks,2):
    widthx = 5 + np.random.randn(1)
    widthy = 5 + np.random.randn(1)
    Z += gaussian(X,Y,xo,yo,amp=peak_height,sigmax=widthx,sigmay=widthy)

#of course, add some noise:
Z = Z + scipy.ndimage.gaussian_filter(0.5*noise_level*np.random.rand(size,size),sigma=5)    
Z = Z + scipy.ndimage.gaussian_filter(0.5*noise_level*np.random.rand(size,size),sigma=1)    

t = time.time() #Start timing the peak-finding algorithm

#Set everything below the threshold to zero:
Z_thresh = np.copy(Z)
Z_thresh[Z_thresh<threshold] = 0
print 'Time after thresholding: %.5f seconds'%(time.time()-t)

#now find the objects
labeled_image, number_of_objects = scipy.ndimage.label(Z_thresh)
print 'Time after labeling: %.5f seconds'%(time.time()-t)

peak_slices = scipy.ndimage.find_objects(labeled_image)
print 'Time after finding objects: %.5f seconds'%(time.time()-t)

def centroid(data):
    h,w = np.shape(data)   
    x = np.arange(0,w)
    y = np.arange(0,h)

    X,Y = np.meshgrid(x,y)

    cx = np.sum(X*data)/np.sum(data)
    cy = np.sum(Y*data)/np.sum(data)

    return cx,cy

centroids = []

for peak_slice in peak_slices:
    dy,dx  = peak_slice
    x,y = dx.start, dy.start
    cx,cy = centroid(Z_thresh[peak_slice])
    centroids.append((x+cx,y+cy))

print 'Total time: %.5f seconds\n'%(time.time()-t)

###########################################
#Now make the plots:
for ax in (ax1,ax2,ax3,ax4): ax.clear()
ax1.set_title('Original image')
ax1.imshow(Z,origin='lower')

ax2.set_title('Thresholded image')
ax2.imshow(Z_thresh,origin='lower')

ax3.set_title('Labeled image')
ax3.imshow(labeled_image,origin='lower') #display the color-coded regions

for peak_slice in peak_slices:  #Draw some rectangles around the objects
    dy,dx  = peak_slice
    xy     = (dx.start, dy.start)
    width  = (dx.stop - dx.start + 1)
    height = (dy.stop - dy.start + 1)
    rect = matplotlib.patches.Rectangle(xy,width,height,fc='none',ec='red')
    ax3.add_patch(rect,)

ax4.set_title('Centroids on original image')
ax4.imshow(Z,origin='lower')

for x,y in centroids:
    ax4.plot(x,y,'kx',ms=10)

ax4.set_xlim(0,size)
ax4.set_ylim(0,size)

plt.tight_layout
plt.show()
Run Code Online (Sandbox Code Playgroud)

size = 500的结果: 在此输入图像描述

编辑:如果峰的数量很大(~100)并且图像的大小很小,那么瓶颈实际上是中心部分.所以,也许这部分的速度也需要优化.

Fra*_*ari 8

你找到峰值的方法(简单的阈值处理)当然对阈值的选择非常敏感:设置得太低而你会"检测"不是峰值的东西; 设置得太高,你会错过有效的峰值.

有更强大的替代方案,可以检测图像强度中的所有局部最大值,无论其强度值如何.我首选的是使用小(5x5或7x7)结构元素进行扩张,然后找到原始图像及其扩张版本具有相同值的像素.这是有效的,因为根据定义,膨胀(x,y,E,img)= {以像素(x,y)为中心的E中的img的最大值},因此膨胀(x,y,E,img)= img(x ,y)每当(x,y)是E标度的局部最大值的位置.

通过快速实现形态学运算符(例如OpenCV中的那个),该算法在空间和时间上都是线性的图像大小(一个额外的图像大小的缓冲区用于扩张图像,一个传递两者).在紧要关头,它也可以在线实现,无需额外的缓冲区和一点额外的复杂性,而且它仍然是线性时间.

为了在存在盐和胡椒或类似噪声(可能引入许多假最大值)的情况下进一步强化它,您可以应用该方法两次,使用不同大小的结构元素(例如,5x5和7x7),然后仅保留稳定最大值,其中稳定性可以通过最大值的不变位置来定义,或者通过不改变多于一个像素的位置等来定义.此外,当您有理由相信它们是由噪声引起时,您可能想要抑制较低的附近最大值.一种有效的方法是首先检测上面的所有局部最大值,按高度降序排序,然后沿着排序列表向下,如果它们在图像中的值没有改变则保留它们,如果它们被保留,则设置为将它们的(2d + 1)x(2d + 1)邻域中的所有像素归零,其中d是您愿意容忍的附近最大值之间的最小距离.


Jai*_*ime 5

如果您有许多峰值,则使用起来会更快scipy.ndimage.center_of_mass.您可以peak_slices使用以下两行替换代码,直到打印总时间为止:

centroids = scipy.ndimage.center_of_mass(Z_thresh, labeled_image,
                                         np.arange(1, number_of_objects + 1))
centroids = [(j, i) for i, j in centroids]
Run Code Online (Sandbox Code Playgroud)

因为num_peaks = 20这比你的方法了大约3倍,但是num_peaks = 100它运行速度快了大约10倍.因此,您最好的选择取决于您的实际数据.