Running multiple, simple linear regressions from dataframe in R

mrp*_*mrp 6 r linear-regression

I have a dataset (data frame) with 5 columns all containing numeric values.

I'm looking to run a simple linear regression for each pair in the dataset.

For example, If the columns were named A, B, C, D, E, I want to run lm(A~B), lm(A~C), lm(A~D), ...., lm(D~E),... and, then I want to plot the data for each pair along with the regression line.

我对R很陌生,所以我在如何实现这一目标的过程中如何旋转.我应该用ddply吗?还是lapply?我真的不确定如何解决这个问题.

Jil*_*ina 7

这是一个使用的解决方案 combn

 combn(names(DF), 2, function(x){lm(DF[, x])}, simplify = FALSE)
Run Code Online (Sandbox Code Playgroud)

例:

set.seed(1)
DF <- data.frame(A=rnorm(50, 100, 3),
                 B=rnorm(50, 100, 3),
                 C=rnorm(50, 100, 3),
                 D=rnorm(50, 100, 3),
                 E=rnorm(50, 100, 3))
Run Code Online (Sandbox Code Playgroud)

更新:添加@Henrik建议(参见评论)

# only the coefficients
> results <- combn(names(DF), 2, function(x){coefficients(lm(DF[, x]))}, simplify = FALSE)
> vars <- combn(names(DF), 2)
> names(results) <- vars[1 , ] # adding names to identify variables in the reggression
> results
$A
 (Intercept)            B 
103.66739418  -0.03354243 

$A
(Intercept)           C 
97.88341555  0.02429041 

$A
(Intercept)           D 
122.7606103  -0.2240759 

$A
(Intercept)           E 
99.26387487  0.01038445 

$B
 (Intercept)            C 
99.971253525  0.003824755 

$B
 (Intercept)            D 
102.65399702  -0.02296721 

$B
(Intercept)           E 
96.83042199  0.03524868 

$C
(Intercept)           D 
 80.1872211   0.1931079 

$C
(Intercept)           E 
 89.0503893   0.1050202 

$D
 (Intercept)            E 
107.84384655  -0.07620397 
Run Code Online (Sandbox Code Playgroud)

  • 也许将响应变量作为名称添加到每个列表元素?像`vars < - combn(names(DF),2)`; `names(-coef-list)< - vars [1,]`.也许. (2认同)