Ran*_*nan 13 c# puzzle algorithm
我有以下问题:
你有N个计数器,最初设置为0,你有两个可能的操作:
给出了M个整数的非空零索引数组A. 此数组表示连续操作:
例如,给定整数N = 5和数组A,使得:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
Run Code Online (Sandbox Code Playgroud)
每次连续操作后计数器的值将是:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
Run Code Online (Sandbox Code Playgroud)
目标是在所有操作之后计算每个计数器的值.
我做了以下解决方案,但它运行在O(NK),其中K =阵列A的长度.
public int[] solution(int N, int[] A) {
int[] result = new int[N];
int maximum = 0;
for (int K = 0; K < A.Length; K++)
{
if (A[K] < 1 || A[K] > N + 1)
throw new InvalidOperationException();
if (A[K] >= 1 && A[K] <= N)
{
result[A[K] - 1]++;
if (result[A[K] - 1] > maximum)
{
maximum = result[A[K] - 1];
}
}
else
{
// inefficiency here
for (int i = 0; i < result.Length; i++)
result[i] = maximum;
}
}
return result;
}
Run Code Online (Sandbox Code Playgroud)
有没有人能告诉我如何用O(N + K)更好地完成这项工作,其中K是数组A的长度?很抱歉可能编码很糟糕,我正在做这些练习来改进我的编程.谢谢!
sya*_*ani 15
这就是我提出的,但我不确定它是否100%有效:
public int[] solution(int N, int[] A) {
int[] result = new int[N];
int maximum = 0;
int resetLimit = 0;
for (int K = 0; K < A.Length; K++)
{
if (A[K] < 1 || A[K] > N + 1)
throw new InvalidOperationException();
if (A[K] >= 1 && A[K] <= N)
{
if (result[A[K] - 1] < resetLimit) {
result[A[K] - 1] = resetLimit + 1;
} else {
result[A[K] - 1]++;
}
if (result[A[K] - 1] > maximum)
{
maximum = result[A[K] - 1];
}
}
else
{
// inefficiency here
//for (int i = 0; i < result.Length; i++)
// result[i] = maximum;
resetLimit = maximum;
}
}
for (int i = 0; i < result.Length; i++)
result[i] = Math.Max(resetLimit, result[i]);
return result;
}
Run Code Online (Sandbox Code Playgroud)
记住:
“使您的代码可读与使其可执行一样重要。”
——罗伯特·C·马丁
即使试图解决一个棘手的问题......
因此,为了获得更好的可读性,我创建了一个类来封装计数器数组及其操作(德米特法则)。遗憾的是,我的第一个解决方案在性能测试中只获得了 60%,因此以牺牲一点可读性为代价,我用更智能的解决方案对其进行了改进,最终获得了 100%。
这是我的两个带有注释的实现:
//I didn't refactored the names of the variables N and A
//to maintain it aligned with the question description
public int[] solution(int N, int[] A)
{
var counters = new Counters(N);
for (int k = 0; k < A.Length; k++)
{
if (A[k] <= N)
counters.IncreaseCounter(A[k]);
else
counters.MaxAllCounters();
}
return counters.ToArray();
}
public class Counters
{
private int[] counters;
private int greaterValueInCounter = 0;
public Counters(int length)
{
counters = new int[length];
}
public void MaxAllCounters()
{
for (int i = 0; i < counters.Length; i++)
{
counters[i] = greaterValueInCounter;
}
}
public void IncreaseCounter(int counterPosition)
{
//The counter is one-based, but our array is zero-based
counterPosition--;
//Increments the counter
counters[counterPosition]++;
if (counters[counterPosition] > greaterValueInCounter)
greaterValueInCounter = counters[counterPosition];
}
//The counters array is encapsuled in this class so if we provide external
//acess to it anyone could modify it and break the purpose of the encapsulation
//So we just exposes a copy of it :)
public int[] ToArray()
{
return (int[])counters.Clone();
}
}
Run Code Online (Sandbox Code Playgroud)
请注意封装的美妙之处:为了改进算法,我只需要编辑Counters
类的一些方法,而无需更改方法上的单个字符solution
。
Counters
类中编辑的方法:
IncreaseCounter()
MaxAllCounters()
ToArray()
最终代码:
//Exactly the same code
public int[] solution(int N, int[] A)
{
var counters = new Counters(N);
for (int k = 0; k < A.Length; k++)
{
if (A[k] <= N)
counters.IncreaseCounter(A[k]);
else
counters.MaxAllCounters();
}
return counters.ToArray();
}
public class Counters
{
private int[] counters;
private int greaterValueInCounter = 0;
private int currentEquilibratedScore = 0;
public Counters(int length)
{
counters = new int[length];
}
public void MaxAllCounters()
{
//We don't update the entire array anymore - that was what caused the O(N*M)
//We just save the current equilibrated score value
currentEquilibratedScore = greaterValueInCounter;
}
public void IncreaseCounter(int counterPosition)
{
//The counter is one-based, but our array is zero-based
counterPosition--;
//We need to add this "if" here because with this new solution the array
//is not always updated, so if we detect that this position is lower than
//the currentEquilibratedScore, we update it before any operation
if (counters[counterPosition] < currentEquilibratedScore)
counters[counterPosition] = currentEquilibratedScore + 1;
else
counters[counterPosition]++;
if (counters[counterPosition] > greaterValueInCounter)
greaterValueInCounter = counters[counterPosition];
}
//The counters array is encapsuled in this class so if we provide external
//acess to it anyone could modify it and break the purpose of the encapsulation
//So we just exposes a copy of it :)
public int[] ToArray()
{
//Now we need to fix the unupdated values in the array
//(the values that are less than the equilibrated score)
for (int i = 0; i < counters.Length; i++)
{
if (counters[i] < currentEquilibratedScore)
counters[i] = currentEquilibratedScore;
}
return (int[])counters.Clone();
}
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
6167 次 |
最近记录: |