mkl*_*kln 30 python dummy-data pandas categorical-data
我正在寻找一种pythonic方式来处理以下问题.
The pandas.get_dummies() method is great to create dummies from a categorical column of a dataframe. For example, if the column has values in ['A', 'B'], get_dummies() creates 2 dummy variables and assigns 0 or 1 accordingly.
Now, I need to handle this situation. A single column, let's call it 'label', has values like ['A', 'B', 'C', 'D', 'A*C', 'C*D'] . get_dummies() creates 6 dummies, but I only want 4 of them, so that a row could have multiple 1s.
Is there a way to handle this in a pythonic way? I could only think of some step-by-step algorithm to get it, but that would not include get_dummies(). Thanks
Edited, hope it is more clear!
off*_*one 63
我知道已经有一段时间了,因为这个问题被问到了,但是(至少现在有)一个文件支持的单行:
In [4]: df
Out[4]:
label
0 (a, c, e)
1 (a, d)
2 (b,)
3 (d, e)
In [5]: df['label'].str.join(sep='*').str.get_dummies(sep='*')
Out[5]:
a b c d e
0 1 0 1 0 1
1 1 0 0 1 0
2 0 1 0 0 0
3 0 0 0 1 1
Run Code Online (Sandbox Code Playgroud)
我有一个更清洁的解决方案.假设我们想要转换以下数据帧
pageid category
0 0 a
1 0 b
2 1 a
3 1 c
Run Code Online (Sandbox Code Playgroud)
成
a b c
pageid
0 1 1 0
1 1 0 1
Run Code Online (Sandbox Code Playgroud)
一种方法是使用scikit-learn的DictVectorizer.但是,我会对学习其他方法感兴趣.
df = pd.DataFrame(dict(pageid=[0, 0, 1, 1], category=['a', 'b', 'a', 'c']))
grouped = df.groupby('pageid').category.apply(lambda lst: tuple((k, 1) for k in lst))
category_dicts = [dict(tuples) for tuples in grouped]
v = sklearn.feature_extraction.DictVectorizer(sparse=False)
X = v.fit_transform(category_dicts)
pd.DataFrame(X, columns=v.get_feature_names(), index=grouped.index)
Run Code Online (Sandbox Code Playgroud)