Con*_*ark 4 erlang binary-search
PS这是我第一次进入SO,如果我做错了请告诉我,我会尽力解决.我花了很多时间试图修复这个算法的实现,而且我的智慧结束了!
我目前正在上课,要求在3种基本上不同的语言中实现相同二进制搜索算法的3种实现.对于他们中的一个,我决定采取艰难的方式,并在Erlang拍摄.这是我的代码:
-export(main/1).
main(_) ->
io:format("Running trials... ~n", []),
N = [2 bsl (2 * X + 6) || X <- lists:seq(0, 7)],
lists:foreach(fun(X) -> io:format("~p: ~p ~n", [X, time_search(X)]) end, N).
time_search(Size) ->
A = list_to_tuple(create_list(Size)),
Iterations = 2000000,
time_search(A, Size + 1, 0, Iterations) / Iterations.
time_search(_, _, Sum, 0) -> Sum;
time_search(A, Key, Sum, IterationNum) ->
Before = now(),
bin_search(A, Key),
time_search(A, Key, Sum + timer:now_diff(now(), Before), IterationNum - 1).
create_list(Size) -> lists:seq(1, Size).
bin_search(A, Key) -> bin_search(A, Key, 1, tuple_size(A)).
bin_search(_, _, Lower, Upper) when Lower > Upper -> false;
bin_search(A, Key, Lower, Upper) ->
Mid = (Upper + Lower) div 2,
Item = element(Mid, A),
if
Key > Item -> bin_search(A, Key, Mid + 1, Upper);
Key < Item -> bin_search(A, Key, Lower, Mid - 1);
true -> true
end.
Run Code Online (Sandbox Code Playgroud)
所以这是输出:
128: 250.8094435 µs
512: 308.7264845 µs
2048: 368.5770285 µs
8192: 425.748134 µs
32768: 477.6267655 µs
131072: 533.340876 µs
524288: 601.023178 µs
2097152: 661.099404 µs
Run Code Online (Sandbox Code Playgroud)
但是与我的ruby实现相比,它显然与O(lg n)相差无几.
编辑:好的,所以也许不是订单......看起来它是相当对数的,但它似乎仍然是错误的......
红宝石:
128: 10.4756 µs
512: 11.8172 µs
2048: 13.5328 µs
8192: 15.3139 µs
32768: 17.0915 µs
131072: 18.8721 µs
524288: 21.5237 µs
2097152: 21.7187 µs
Run Code Online (Sandbox Code Playgroud)
以前我使用Lists,但我了解到那些没有O(1)检索时间,所以我切换到Tuples.是什么导致我的Erlang运行效率低下?
以防万一,这是我的Ruby实现
def p5_BinarySearch
n = Array.new(8){ |i| 2 << (2 * i + 6) }
n.each { |x|
time = timeSearch x
puts "#{x}: #{time.round 4} µs"
}
end
def timeSearch(size)
values = createArray size
iterations = 2e7.to_int
totalTime = 0
iterations.times{
before = Time.now
binarySearch(values, size + 1)
totalTime += Time.now - before
}
totalTime * 1e7 / iterations
end
def createArray(size)
(1..size).to_a
end
def binarySearch(values, key, low = 0, high = values.length - 1)
return false if low > high
mid = (low + high) / 2
return binarySearch(values, key, mid + 1, high) if key > values[mid]
return binarySearch(values, key, low, mid - 1) if key < values[mid]
true
end
if __FILE__ == $0
puts "Running trials..."
p5_BinarySearch
end
Run Code Online (Sandbox Code Playgroud)
算法看起来不错,但在这种情况下使用escript解释器是个问题.使用escript -c运行escript,以便在运行之前编译脚本而不是解释,或者按照rvirding的建议创建一个Erlang模块.有了它,你可以看到它执行得非常快.
最好使用os:timestamp()而不是使用now()来获得准确的计时值.更准确的是使用timer:tc函数.
{Time,_} = timer:tc(fun bin_search/2, [A, Key]),
time_search(A, Key, Sum + Time, IterationNum - 1).
Run Code Online (Sandbox Code Playgroud)
我的机器上的结果是这样的.(没有-c大约需要450微秒)
128: 1.105
512: 1.2005
2048: 1.4015
8192: 1.5145
32768: 1.7225
131072: 1.8515
524288: 2.024
2097152: 2.188
Run Code Online (Sandbox Code Playgroud)