如果是这样,我们为什么需要sapply?
x <- list(a=1, b=1)
y <- list(a=1)
JSON <- rep(list(x,y),10000)
microbenchmark(sapply(JSON, function(x) x$a),
unlist(lapply(JSON, function(x) x$a)),
sapply(JSON, "[[", "a"),
unlist(lapply(JSON, "[[", "a"))
)
Unit: milliseconds
expr min lq median uq max neval
sapply(JSON, function(x) x$a) 25.22623 28.55634 29.71373 31.76492 88.26514 100
unlist(lapply(JSON, function(x) x$a)) 17.85278 20.25889 21.61575 22.67390 78.54801 100
sapply(JSON, "[[", "a") 18.85529 20.06115 21.53790 23.42480 38.56610 100
unlist(lapply(JSON, "[[", "a")) 11.33859 11.69198 12.25329 13.37008 27.81361 100
Run Code Online (Sandbox Code Playgroud)
flo*_*del 19
除了运行lapply,sapply运行simplify2array以尝试将输出拟合到数组中.为了确定这是否可行,该功能需要检查所有单个输出是否具有相同的长度:这是通过昂贵的来完成的unique(lapply(..., length)),这可以解释您所看到的大部分时间差异:
b <- lapply(JSON, "[[", "a")
microbenchmark(lapply(JSON, "[[", "a"),
unlist(b),
unique(lapply(b, length)),
sapply(JSON, "[[", "a"),
sapply(JSON, "[[", "a", simplify = FALSE),
unlist(lapply(JSON, "[[", "a"))
)
# Unit: microseconds
# expr min lq median uq max neval
# lapply(JSON, "[[", "a") 14809.151 15384.358 15774.26 16905.226 24944.863 100
# unlist(b) 920.047 1043.719 1158.62 1223.091 8056.231 100
# unique(lapply(b, length)) 10778.065 11060.452 11456.11 12581.414 19717.740 100
# sapply(JSON, "[[", "a") 24827.206 25685.535 26656.88 30519.556 93195.751 100
# sapply(JSON, "[[", "a", simplify = FALSE) 14283.541 14922.780 15526.42 16654.058 26865.022 100
# unlist(lapply(JSON, "[[", "a")) 15334.026 16133.146 16607.12 18476.182 30080.544 100
Run Code Online (Sandbox Code Playgroud)
use*_*275 10
正如droopy和Roland所指出的那样,它sapply是一种lapply设计用于方便使用的包装功能.sapply使用simplify2array速度比unlist:
> microbenchmark(unlist(as.list(1:1000)), simplify2array(as.list(1:1000)), times=1000)
Unit: microseconds
expr min lq median uq max neval
unlist(as.list(1:1000)) 99.734 109.0230 113.912 118.3120 21343.92 1000
simplify2array(as.list(1:1000)) 892.712 931.0895 947.957 976.3125 22241.52 1000
Run Code Online (Sandbox Code Playgroud)
此外,返回矩阵时,sapply比其他基函数慢,例如:
a <- list(c(1,2,3,4), c(1,2,3,4), c(1,2,3,4))
microbenchmark(t(do.call(rbind, lapply(a, function(x)x))), sapply(a, function(x)x))
Unit: microseconds
expr min lq median uq max neval
t(do.call(rbind, lapply(a, function(x) x))) 29.823 30.801 32.512 33.734 94.845 100
sapply(a, function(x) x) 57.201 58.179 59.156 60.134 111.956 100
Run Code Online (Sandbox Code Playgroud)
但特别是在第二种情况下,sapply使用起来要容易得多.