为什么Fortran中的单变量Horner比NumPy更快,而双变量Horner则不然

Aer*_*ius 5 python arrays fortran numpy f2py

我想在Python中执行多项式计算.该polynomial封装numpy是不是对我不够快.因此,我决定在Fortran中重写几个函数,并用于f2py创建易于导入Python的共享库.目前,我正在对我的例程进行基准测试,以进行单变量和双变量多项式评估numpy.

在单因素例行我用霍纳的方法一样numpy.polynomial.polynomial.polyval.我观察到Fortran例程比numpy对应例程快的因子随着多项式的阶数的增加而增加.

在双变量例程中,我使用Horner的方法两次.首先是y,然后是x.遗憾的是,我观察到,为了增加多项式阶数,numpy对手会赶上并最终超越我的Fortran例程.由于numpy.polynomial.polynomial.polyval2d使用类似于我的方法,我认为这第二个观察是奇怪的.

我希望这个结果源于我对Fortran和f2py.的经验不足.有人可能有任何线索为什么单变量例程总是显得优越,而双变量例程只对低阶多项式优越?

编辑 这是我最新的更新代码,基准脚本和性能图:

polynomial.f95

subroutine polyval(p, x, pval, nx)

    implicit none

    real(8), dimension(nx), intent(in) :: p
    real(8), intent(in) :: x
    real(8), intent(out) :: pval
    integer, intent(in) :: nx
    integer :: i

    pval = 0.0d0
    do i = nx, 1, -1
        pval = pval*x + p(i)
    end do

end subroutine polyval

subroutine polyval2(p, x, y, pval, nx, ny)

    implicit none

    real(8), dimension(nx, ny), intent(in) :: p
    real(8), intent(in) :: x, y
    real(8), intent(out) :: pval
    integer, intent(in) :: nx, ny
    real(8) :: tmp
    integer :: i, j

    pval = 0.0d0
    do j = ny, 1, -1
        tmp = 0.0d0
        do i = nx, 1, -1
            tmp = tmp*x + p(i, j)
        end do
        pval = pval*y + tmp
    end do

end subroutine polyval2

subroutine polyval3(p, x, y, z, pval, nx, ny, nz)

    implicit none

    real(8), dimension(nx, ny, nz), intent(in) :: p
    real(8), intent(in) :: x, y, z
    real(8), intent(out) :: pval
    integer, intent(in) :: nx, ny, nz
    real(8) :: tmp, tmp2
    integer :: i, j, k

    pval = 0.0d0
    do k = nz, 1, -1
        tmp2 = 0.0d0
        do j = ny, 1, -1
            tmp = 0.0d0
            do i = nx, 1, -1
                tmp = tmp*x + p(i, j, k)
            end do
            tmp2 = tmp2*y + tmp
        end do
        pval = pval*z + tmp2
    end do

end subroutine polyval3
Run Code Online (Sandbox Code Playgroud)

benchmark(py使用此脚本生成图)

import time
import os

import numpy as np
import matplotlib.pyplot as plt

# Compile and import Fortran module
os.system('f2py -c polynomial.f95 --opt="-O3 -ffast-math" \
--f90exec="gfortran-4.8" -m polynomial')
import polynomial

# Create random x and y value
x = np.random.rand()
y = np.random.rand()
z = np.random.rand()

# Number of repetition
repetition = 10

# Number of times to loop over a function
run = 100

# Number of data points
points = 26

# Max number of coefficients for univariate case
n_uni_min = 4
n_uni_max = 100

# Max number of coefficients for bivariate case
n_bi_min = 4
n_bi_max = 100

# Max number of coefficients for trivariate case
n_tri_min = 4
n_tri_max = 100

# Case on/off switch
case_on = [1, 1, 1]

case_1_done = 0
case_2_done = 0
case_3_done = 0

#=================#
# UNIVARIATE CASE #
#=================#

if case_on[0]:

    # Array containing the polynomial order + 1 for several univariate polynomials
    n_uni = np.array([int(x) for x in np.linspace(n_uni_min, n_uni_max, points)])

    # Initialise arrays for storing timing results
    time_uni_numpy = np.zeros(n_uni.size)
    time_uni_fortran = np.zeros(n_uni.size)

    for i in xrange(len(n_uni)):
        # Create random univariate polynomial of order n - 1
        p = np.random.rand(n_uni[i])

        # Time evaluation of polynomial using NumPy
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): np.polynomial.polynomial.polyval(x, p)
            t2 = time.time()
            dt.append(t2 - t1)
        time_uni_numpy[i] = np.average(dt[2::])

        # Time evaluation of polynomial using Fortran
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): polynomial.polyval(p, x)
            t2 = time.time()
            dt.append(t2 - t1)
        time_uni_fortran[i] = np.average(dt[2::])

    # Speed-up factor
    factor_uni = time_uni_numpy / time_uni_fortran

    results_uni = np.zeros([len(n_uni), 4])
    results_uni[:, 0] = n_uni
    results_uni[:, 1] = factor_uni
    results_uni[:, 2] = time_uni_numpy
    results_uni[:, 3] = time_uni_fortran
    print results_uni, '\n'

    plt.figure()
    plt.plot(n_uni, factor_uni)
    plt.title('Univariate comparison')
    plt.xlabel('# coefficients')
    plt.ylabel('Speed-up factor')
    plt.xlim(n_uni[0], n_uni[-1])
    plt.ylim(0, max(factor_uni))
    plt.grid(aa=True)

case_1_done = 1

#================#
# BIVARIATE CASE #
#================#

if case_on[1]:

    # Array containing the polynomial order + 1 for several bivariate polynomials
    n_bi = np.array([int(x) for x in np.linspace(n_bi_min, n_bi_max, points)])

    # Initialise arrays for storing timing results
    time_bi_numpy = np.zeros(n_bi.size)
    time_bi_fortran = np.zeros(n_bi.size)

    for i in xrange(len(n_bi)):
        # Create random bivariate polynomial of order n - 1 in x and in y
        p = np.random.rand(n_bi[i], n_bi[i])

        # Time evaluation of polynomial using NumPy
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): np.polynomial.polynomial.polyval2d(x, y, p)
            t2 = time.time()
            dt.append(t2 - t1)
        time_bi_numpy[i] = np.average(dt[2::])

        # Time evaluation of polynomial using Fortran
        p = np.asfortranarray(p)
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): polynomial.polyval2(p, x, y)
            t2 = time.time()
            dt.append(t2 - t1)
        time_bi_fortran[i] = np.average(dt[2::])

    # Speed-up factor
    factor_bi = time_bi_numpy / time_bi_fortran

    results_bi = np.zeros([len(n_bi), 4])
    results_bi[:, 0] = n_bi
    results_bi[:, 1] = factor_bi
    results_bi[:, 2] = time_bi_numpy
    results_bi[:, 3] = time_bi_fortran
    print results_bi, '\n'

    plt.figure()
    plt.plot(n_bi, factor_bi)
    plt.title('Bivariate comparison')
    plt.xlabel('# coefficients')
    plt.ylabel('Speed-up factor')
    plt.xlim(n_bi[0], n_bi[-1])
    plt.ylim(0, max(factor_bi))
    plt.grid(aa=True)

case_2_done = 1

#=================#
# TRIVARIATE CASE #
#=================#

if case_on[2]:

    # Array containing the polynomial order + 1 for several bivariate polynomials
    n_tri = np.array([int(x) for x in np.linspace(n_tri_min, n_tri_max, points)])

    # Initialise arrays for storing timing results
    time_tri_numpy = np.zeros(n_tri.size)
    time_tri_fortran = np.zeros(n_tri.size)

    for i in xrange(len(n_tri)):
        # Create random bivariate polynomial of order n - 1 in x and in y
        p = np.random.rand(n_tri[i], n_tri[i])

        # Time evaluation of polynomial using NumPy
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): np.polynomial.polynomial.polyval3d(x, y, z, p)
            t2 = time.time()
            dt.append(t2 - t1)
        time_tri_numpy[i] = np.average(dt[2::])

        # Time evaluation of polynomial using Fortran
        p = np.asfortranarray(p)
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): polynomial.polyval3(p, x, y, z)
            t2 = time.time()
            dt.append(t2 - t1)
        time_tri_fortran[i] = np.average(dt[2::])

    # Speed-up factor
    factor_tri = time_tri_numpy / time_tri_fortran

    results_tri = np.zeros([len(n_tri), 4])
    results_tri[:, 0] = n_tri
    results_tri[:, 1] = factor_tri
    results_tri[:, 2] = time_tri_numpy
    results_tri[:, 3] = time_tri_fortran
    print results_tri

    plt.figure()
    plt.plot(n_bi, factor_bi)
    plt.title('Trivariate comparison')
    plt.xlabel('# coefficients')
    plt.ylabel('Speed-up factor')
    plt.xlim(n_tri[0], n_tri[-1])
    plt.ylim(0, max(factor_tri))
    plt.grid(aa=True)
    print '\n'

case_3_done = 1

#==============================================================================

plt.show()
Run Code Online (Sandbox Code Playgroud)

结果 在此输入图像描述 在此输入图像描述 在此输入图像描述

编辑纠正了steabert的提议

subroutine polyval(p, x, pval, nx)

    implicit none

    real*8, dimension(nx), intent(in) :: p
    real*8, intent(in) :: x
    real*8, intent(out) :: pval
    integer, intent(in) :: nx

    integer, parameter :: simd = 8
    real*8 :: tmp(simd), xpower(simd), maxpower
    integer :: i, j, k

    xpower(1) = x
    do i = 2, simd
        xpower(i) = xpower(i-1)*x
    end do
    maxpower = xpower(simd)

    tmp = 0.0d0
    do i = nx+1, simd+2, -simd
        do j = 1, simd
            tmp(j) = tmp(j)*maxpower + p(i-j)*xpower(simd-j+1)
        end do
    end do

    k = mod(nx-1, simd)
    if (k == 0) then
        pval = sum(tmp) + p(1)
    else
        pval = sum(tmp) + p(k+1)
        do i = k, 1, -1
            pval = pval*x + p(i)
        end do
    end if

end subroutine polyval
Run Code Online (Sandbox Code Playgroud)

编辑测试代码以验证上面的代码为x> 1提供了不良结果

import polynomial as P
import numpy.polynomial.polynomial as PP

import numpy as np

for n in xrange(2,100):
    poly1n = np.random.rand(n)
    poly1f = np.asfortranarray(poly1n)

    x = 2

    print np.linalg.norm(P.polyval(poly1f, x) - PP.polyval(x, poly1n)), '\n'
Run Code Online (Sandbox Code Playgroud)

Dav*_*veP 6

在双变量情况下,p是一个二维数组.这意味着C vs fortran对数组的排序是不同的.默认情况下,numpy函数提供C排序,显然fortran例程使用fortran排序.

f2py非常聪明,可以处理这个问题,并自动在C和fortran格式数组之间进行转换.但是,这会导致一些开销,这是性能降低的可能原因之一.您可以p通过numpy.asfortranarray在计时例程之外手动转换为fortran类型来检查这是否是原因.当然,为了使其有意义,在您的实际用例中,您需要确保输入数组符合fortran顺序.

f2py有一个选项-DF2PY_REPORT_ON_ARRAY_COPY,可以在任何时候复制数组时发出警告.

如果这不是原因,那么您需要考虑更深入的细节,例如您正在使用哪个fortran编译器,以及它正在应用哪种优化.可能会降低速度的一些例子包括在堆上而不是堆栈上分配数组(使用昂贵的调用malloc),尽管我希望这种效果对于较大的数组变得不那么重要.

最后,你应该考虑这样一种可能性,即对于大型的双变量拟合,Nnumpy例程已经基本上处于最佳效率.在这种情况下,numpy例程可能花费大部分时间来运行优化的C例程,并且python代码的开销相比之下变得可以忽略不计.在这种情况下,您不希望您的fortran代码显示任何显着的加速.


ste*_*ert 2

遵循其他建议,p=np.asfortranarray(p)在我测试它时,在计时器之前使用确实可以使性能与 numpy 相当。我将双变量工作台的范围扩展为n_bi = np.array([2**i for i in xrange(1, 15)]),以便 p 矩阵将大于我的 L3 缓存大小。

为了进一步优化这一点,我认为自动编译器选项不会有太大帮助,因为内部循环具有依赖性。仅当您手动展开它时,才会ifort对最内层的循环进行矢量化。需要和。gfortran​ 对于受主存带宽限制的矩阵大小,与 numpy 相比,这将性能优势提高了 1 到 3 倍。-O3-ffast-math

更新:将其也应用于单变量代码并使用 进行编译后f2py --opt='-O3 -ffast-math' -c -m polynomial polynomial.f90,我得到 benchmark.py 的源代码和结果:

subroutine polyval(p, x, pval, nx)

implicit none

real*8, dimension(nx), intent(in) :: p
real*8, intent(in) :: x
real*8, intent(out) :: pval
integer, intent(in) :: nx

integer, parameter :: simd = 8
real*8 :: tmp(simd), vecx(simd), xfactor
integer :: i, j, k

! precompute factors
do i = 1, simd
    vecx(i)=x**(i-1)
end do
xfactor = x**simd

tmp = 0.0d0
do i = 1, nx, simd
    do k = 1, simd
        tmp(k) = tmp(k)*xfactor + p(nx-(i+k-1)+1)*vecx(simd-k+1)
    end do
end do
pval = sum(tmp)


end subroutine polyval

subroutine polyval2(p, x, y, pval, nx, ny)

implicit none

real*8, dimension(nx, ny), intent(in) :: p
real*8, intent(in) :: x, y
real*8, intent(out) :: pval
integer, intent(in) :: nx, ny

integer, parameter :: simd = 8
real*8 :: tmp(simd), vecx(simd), xfactor
integer :: i, j, k

! precompute factors
do i = 1, simd
    vecx(i)=x**(i-1)
end do
xfactor = x**simd

! horner
pval=0.0d0
do i = 1, ny
    tmp = 0.0d0
    do j = 1, nx, simd
        ! inner vectorizable loop
        do k = 1, simd
            tmp(k) = tmp(k)*xfactor + p(nx-(j+k-1)+1,ny-i+1)*vecx(simd-k+1)
        end do
    end do
    pval = pval*y + sum(tmp)
end do

end subroutine polyval2
Run Code Online (Sandbox Code Playgroud)

更新 2:正如所指出的,此代码不正确,至少当大小不能被 整除时simd。它只是展示了手动帮助编译器的概念,所以不要只是这样使用它。如果大小不是 2 的幂,则必须使用一个小的余数循环来处理悬空索引。做到这一点并不难,这是单变量情况的正确过程,应该很容易将其扩展到双变量:

subroutine polyval(p, x, pval, nx)
implicit none

real*8, dimension(nx), intent(in) :: p
real*8, intent(in) :: x
real*8, intent(out) :: pval
integer, intent(in) :: nx

integer, parameter :: simd = 4
real*8 :: tmp(simd), vecx(simd), xfactor
integer :: i, j, k, nr

! precompute factors
do i = 1, simd
    vecx(i)=x**(i-1)
end do
xfactor = x**simd

! check remainder
nr = mod(nx, simd)

! horner
tmp = 0.0d0
do i = 1, nx-nr, simd
    do k = 1, simd
        tmp(k) = tmp(k)*xfactor + p(nx-(i+k-1)+1)*vecx(simd-k+1)
    end do
end do
pval = sum(tmp)

! do remainder
pval = pval * x**nr
do i = 1, nr
    pval = pval + p(i) * vecx(i)
end do
end subroutine polyval
Run Code Online (Sandbox Code Playgroud)

单变量

双变量

另外,对于非常小的尺寸应该小心,因为时间太短而无法获得准确的性能概况。此外,相对时间numpy可能具有欺骗性,因为 numpy 的绝对时间可能非常糟糕。以下是最大案例的时间安排:

对于 nx=2 20 的单变量,numpy 的时间为 1.21 s,自定义 fortran 版本的时间为 1.69e-3 s。对于 nx ny=2 20 的双变量,numpy 的时间为 8e-3 s,自定义版本的时间为 1.68e-3 s。当总 nx ny 大小相同时,单变量和双变量的时间相同这一事实非常重要,因为它支持代码在内存带宽限制附近执行的事实。

更新 3:使用较小尺寸的新 python 脚本,simd=4我得到以下性能:

在此输入图像描述

在此输入图像描述

更新 4:至于正确性,结果在双精度精度内是相同的,如果您针对单变量示例运行此 python 代码,您可以看到这一点:

import polynomial as P
import numpy.polynomial.polynomial as PP

import numpy as np

for n in xrange(2,100):
    poly1n = np.random.rand(n)
    poly1f = np.asfortranarray(poly1n)

    x = 2

    print "%18.14e" % P.polyval(poly1f, x)
    print "%18.14e" % PP.polyval(x, poly1n)
    print (P.polyval(poly1f, x) - PP.polyval(x, poly1n))/PP.polyval(x,poly1n), '\n'
Run Code Online (Sandbox Code Playgroud)