我有一个数据集,每个时间戳包含多个元组 - 每个都有一个计数.每个时间戳可能存在不同的元组.我想在5分钟的箱子里将这些组合在一起,并为每个独特的元组添加计数.使用Pandas group-by有一个很好的干净方法吗?
它们具有以下形式:((u'67.163.47.231',u'8.27.82.254',50186,80,6,1377565195000),2)
这是一个列表,有一个6元组(最后一个条目是时间戳),然后计数.
每个时间戳都会有一个5元组的集合:
(5元组),t-time-stamp,count,例如(仅用于一个时间戳)
[((u'71.57.43.240', u'8.27.82.254', 33108, 80, 6, 1377565195000), 1),
((u'67.163.47.231', u'8.27.82.254', 50186, 80, 6, 1377565195000), 2),
((u'8.27.82.254', u'98.206.29.242', 25159, 80, 6, 1377565195000), 1),
((u'71.179.102.253', u'8.27.82.254', 50958, 80, 6, 1377565195000), 1)]
In [220]: df = DataFrame ( { 'key1' : [ (u'71.57.43.240', u'8.27.82.254', 33108, 80, 6), (u'67.163.47.231', u'8.27.82.254', 50186, 80, 6) ], 'data1' : np.array((1,2)), 'data2': np.array((1377565195000,1377565195000))})
In [226]: df
Out[226]:
data1 data2 key1
0 1 1377565195000 (71.57.43.240, 8.27.82.254, 33108, 80, 6)
1 2 1377565195000 (67.163.47.231, 8.27.82.254, 50186, 80, 6)
Run Code Online (Sandbox Code Playgroud)
或转换:
In [231]: df = DataFrame ( { 'key1' : [ (u'71.57.43.240', u'8.27.82.254', 33108, 80, 6), (u'67.163.47.231', u'8.27.82.254', 50186, 80, 6) ], 'data1' : np.array((1,2)),
.....: 'data2': np.array(( datetime.utcfromtimestamp(1377565195),datetime.utcfromtimestamp(1377565195) )) })
In [232]: df
Out[232]:
data1 data2 key1
0 1 2013-08-27 00:59:55 (71.57.43.240, 8.27.82.254, 33108, 80, 6)
1 2 2013-08-27 00:59:55 (67.163.47.231, 8.27.82.254, 50186, 80, 6)
Here's a simpler example:
time count city
00:00:00 1 Montreal
00:00:00 2 New York
00:00:00 1 Chicago
00:01:00 2 Montreal
00:01:00 3 New York
after bin-ing
time count city
00:05:00 3 Montreal
00:05:00 5 New York
00:05:00 1 Chicago
Run Code Online (Sandbox Code Playgroud)
这似乎运作良好:
times = [ parse('00:00:00'), parse('00:00:00'), parse('00:00:00'), parse('00:01:00'), parse('00:01:00'),
parse('00:02:00'), parse('00:02:00'), parse('00:03:00'), parse('00:04:00'), parse('00:05:00'),
parse('00:05:00'), parse('00:06:00'), parse('00:06:00') ]
cities = [ 'Montreal', 'New York', 'Chicago', 'Montreal', 'New York',
'New York', 'Chicago', 'Montreal', 'Montreal', 'New York', 'Chicago', 'Montreal', 'Chicago']
counts = [ 1, 2, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 1]
frame = DataFrame( { 'city': cities, 'time': times, 'count': counts } )
In [150]: frame
Out[150]:
city count time
0 Montreal 1 2013-09-07 00:00:00
1 New York 2 2013-09-07 00:00:00
2 Chicago 1 2013-09-07 00:00:00
3 Montreal 2 2013-09-07 00:01:00
4 New York 3 2013-09-07 00:01:00
5 New York 1 2013-09-07 00:02:00
6 Chicago 1 2013-09-07 00:02:00
7 Montreal 1 2013-09-07 00:03:00
8 Montreal 2 2013-09-07 00:04:00
9 New York 2 2013-09-07 00:05:00
10 Chicago 2 2013-09-07 00:05:00
11 Montreal 1 2013-09-07 00:06:00
12 Chicago 1 2013-09-07 00:06:00
frame['time_5min'] = frame['time'].map(lambda x: pd.DataFrame([0],index=pd.DatetimeIndex([x])).resample('5min').index[0])
In [152]: frame
Out[152]:
city count time time_5min
0 Montreal 1 2013-09-07 00:00:00 2013-09-07 00:00:00
1 New York 2 2013-09-07 00:00:00 2013-09-07 00:00:00
2 Chicago 1 2013-09-07 00:00:00 2013-09-07 00:00:00
3 Montreal 2 2013-09-07 00:01:00 2013-09-07 00:00:00
4 New York 3 2013-09-07 00:01:00 2013-09-07 00:00:00
5 New York 1 2013-09-07 00:02:00 2013-09-07 00:00:00
6 Chicago 1 2013-09-07 00:02:00 2013-09-07 00:00:00
7 Montreal 1 2013-09-07 00:03:00 2013-09-07 00:00:00
8 Montreal 2 2013-09-07 00:04:00 2013-09-07 00:00:00
9 New York 2 2013-09-07 00:05:00 2013-09-07 00:05:00
10 Chicago 2 2013-09-07 00:05:00 2013-09-07 00:05:00
11 Montreal 1 2013-09-07 00:06:00 2013-09-07 00:05:00
12 Chicago 1 2013-09-07 00:06:00 2013-09-07 00:05:00
In [153]: df = frame.groupby(['time_5min', 'city']).aggregate('sum')
In [154]: df
Out[154]:
count
time_5min city
2013-09-07 00:00:00 Chicago 2
Montreal 6
New York 6
2013-09-07 00:05:00 Chicago 3
Montreal 1
New York 2
In [155]: df.reset_index(1)
Out[155]:
city count
time_5min
2013-09-07 00:00:00 Chicago 2
2013-09-07 00:00:00 Montreal 6
2013-09-07 00:00:00 New York 6
2013-09-07 00:05:00 Chicago 3
2013-09-07 00:05:00 Montreal 1
2013-09-07 00:05:00 New York 2
Run Code Online (Sandbox Code Playgroud)
如果将日期设置为索引,则可以使用 TimeGrouper(它允许您按 5 分钟间隔进行分组):
In [11]: from pandas.tseries.resample import TimeGrouper
In [12]: df.set_index('data2', inplace=True)
In [13]: g = df.groupby(TimeGrouper('5Min'))
Run Code Online (Sandbox Code Playgroud)
然后,您可以使用 nunique 计算每 5 分钟间隔内唯一项目的数量:
In [14]: g['key1'].nunique()
Out[14]:
2013-08-27 00:55:00 2
dtype: int64
Run Code Online (Sandbox Code Playgroud)
如果您正在查找每个元组的计数,您可以使用 value_counts:
In [15]: g['key1'].apply(pd.value_counts)
Out[15]:
2013-08-27 00:55:00 (71.57.43.240, 8.27.82.254, 33108, 80, 6) 1
(67.163.47.231, 8.27.82.254, 50186, 80, 6) 1
dtype: int64
Run Code Online (Sandbox Code Playgroud)
注意:这是一个具有 MultiIndex 的 Series(使用 reset_index 使其成为 DataFrame)。
In [16]: g['key1'].apply(pd.value_counts).reset_index(1)
Out[16]:
level_1 0
2013-08-27 00:55:00 (71.57.43.240, 8.27.82.254, 33108, 80, 6) 1
2013-08-27 00:55:00 (67.163.47.231, 8.27.82.254, 50186, 80, 6) 1
Run Code Online (Sandbox Code Playgroud)
您可能想要提供这些信息更丰富的列名称:)。
更新:之前我破解了 get get_dummies,请参阅编辑历史记录。
| 归档时间: |
|
| 查看次数: |
978 次 |
| 最近记录: |