Pandas重置系列上的索引以删除多索引

dar*_*dog 26 python pandas

我创建了一个Seriesfrom DataFrame,当我用一个像这样的计数重新采样一些数据时:where H2DataFrame:

H3=H2[['SOLD_PRICE']]
H5=H3.resample('Q',how='count')
H6=pd.rolling_mean(H5,4)
Run Code Online (Sandbox Code Playgroud)

这产生了一个看起来像这样的系列:

1999-03-31  SOLD_PRICE     NaN
1999-06-30  SOLD_PRICE     NaN
1999-09-30  SOLD_PRICE     NaN
1999-12-31  SOLD_PRICE    3.00
2000-03-31  SOLD_PRICE    3.00
Run Code Online (Sandbox Code Playgroud)

索引看起来像:

MultiIndex
[(1999-03-31 00:00:00, u'SOLD_PRICE'), (1999-06-30 00:00:00, u'SOLD_PRICE'), (1999-09-30 00:00:00, u'SOLD_PRICE'), (1999-12-31 00:00:00, u'SOLD_PRICE'),.....
Run Code Online (Sandbox Code Playgroud)

我不希望第二列作为索引.理想情况下,我将第DataFrame1列作为"日期",第2列作为"销售"(删除索引的第二级).我不太明白如何重新配置​​索引.

Phi*_*oud 39

只需致电reset_index():

In [130]: s
Out[130]:
0           1
1999-03-31  SOLD_PRICE   NaN
1999-06-30  SOLD_PRICE   NaN
1999-09-30  SOLD_PRICE   NaN
1999-12-31  SOLD_PRICE     3
2000-03-31  SOLD_PRICE     3
Name: 2, dtype: float64

In [131]: s.reset_index()
Out[131]:
            0           1   2
0  1999-03-31  SOLD_PRICE NaN
1  1999-06-30  SOLD_PRICE NaN
2  1999-09-30  SOLD_PRICE NaN
3  1999-12-31  SOLD_PRICE   3
4  2000-03-31  SOLD_PRICE   3
Run Code Online (Sandbox Code Playgroud)

删除列的方法有很多种:

调用reset_index()两次并指定一列:

In [136]: s.reset_index(0).reset_index(drop=True)
Out[136]:
            0   2
0  1999-03-31 NaN
1  1999-06-30 NaN
2  1999-09-30 NaN
3  1999-12-31   3
4  2000-03-31   3
Run Code Online (Sandbox Code Playgroud)

重置索引后删除列:

In [137]: df = s.reset_index()

In [138]: df
Out[138]:
            0           1   2
0  1999-03-31  SOLD_PRICE NaN
1  1999-06-30  SOLD_PRICE NaN
2  1999-09-30  SOLD_PRICE NaN
3  1999-12-31  SOLD_PRICE   3
4  2000-03-31  SOLD_PRICE   3

In [139]: del df[1]

In [140]: df
Out[140]:
            0   2
0  1999-03-31 NaN
1  1999-06-30 NaN
2  1999-09-30 NaN
3  1999-12-31   3
4  2000-03-31   3
Run Code Online (Sandbox Code Playgroud)

drop()重置后调用:

In [144]: s.reset_index().drop(1, axis=1)
Out[144]:
            0   2
0  1999-03-31 NaN
1  1999-06-30 NaN
2  1999-09-30 NaN
3  1999-12-31   3
4  2000-03-31   3
Run Code Online (Sandbox Code Playgroud)

然后,在重置索引后,只需重命名列

In [146]: df.columns = ['Date', 'Sales']

In [147]: df
Out[147]:
         Date  Sales
0  1999-03-31    NaN
1  1999-06-30    NaN
2  1999-09-30    NaN
3  1999-12-31      3
4  2000-03-31      3
Run Code Online (Sandbox Code Playgroud)


unu*_*tbu 15

当您使用双括号时,例如

H3 = H2[['SOLD_PRICE']]
Run Code Online (Sandbox Code Playgroud)

H3成为DataFrame.如果使用单个支架,

H3 = H2['SOLD_PRICE']
Run Code Online (Sandbox Code Playgroud)

然后H3成为一个系列.如果H3是一个系列,那么你想要的结果自然如下:

import pandas as pd
import numpy as np
rng = pd.date_range('1/1/2011', periods=72, freq='M')
H2 = pd.DataFrame(np.arange(len(rng)), index=rng, columns=['SOLD_PRICE'])
H3 = H2['SOLD_PRICE']
H5 = H3.resample('Q', how='count')
H6 = pd.rolling_mean(H5,4)
print(H6.head())
Run Code Online (Sandbox Code Playgroud)

产量

2011-03-31   NaN
2011-06-30   NaN
2011-09-30   NaN
2011-12-31     3
2012-03-31     3
dtype: float64
Run Code Online (Sandbox Code Playgroud)