ron*_*oni 5 optimization matlab image-processing neighbours
我有一个由正值和负值组成的矩阵.我需要做这些事情.
设u(i,j)表示矩阵的像素u.
u(i-1,j)和u(i+1,j)具有相反的符号或u(i,j-1)和u(i,j+1)具有相反的符号.(2r+1)X(2r+1)适用于每个像素.我正在考虑r=1它,我必须实际获得每个零交叉像素的8个邻域像素.我在一个程序中完成了这个.请看下面的内容.
%// calculate the zero crossing pixels
front = isfront(u);
%// calculate the narrow band of around the zero crossing pixels
band = isband(u,front,1);
Run Code Online (Sandbox Code Playgroud)
我也附上了isfront和isband功能.
function front = isfront( phi )
%// grab the size of phi
[n, m] = size(phi);
%// create an boolean matrix whose value at each pixel is 0 or 1
%// depending on whether that pixel is a front point or not
front = zeros( size(phi) );
%// A piecewise(Segmentation) linear approximation to the front is contructed by
%// checking each pixels neighbour. Do not check pixels on border.
for i = 2 : n - 1;
for j = 2 : m - 1;
if (phi(i-1,j)*phi(i+1,j)<0) || (phi(i,j-1)*phi(i,j+1)<0)
front(i,j) = 100;
else
front(i,j) = 0;
end
end
end
function band = isband(phi, front, width)
%// grab size of phi
[m, n] = size(phi);
%// width=r=1;
width = 1;
[x,y] = find(front==100);
%// create an boolean matrix whose value at each pixel is 0 or 1
%// depending on whether that pixel is a band point or not
band = zeros(m, n);
%// for each pixel in phi
for ii = 1:m
for jj = 1:n
for k = 1:size(x,1)
if (ii==x(k)) && (jj==y(k))
band(ii-1,jj-1) = 100; band(ii-1,jj) = 100; band(ii-1,jj+1) = 100;
band(ii ,jj-1) = 100; band(ii ,jj) = 100; band(ii,jj+1) = 100;
band(ii+1,jj-1) = 100; band(ii+1,jj) = 100; band(ii+1,jj+1) = 100;
end
end
end
end
Run Code Online (Sandbox Code Playgroud)
输出如下:以及计算时间:

%// Computation time
%// for isfront function
Elapsed time is 0.003413 seconds.
%// for isband function
Elapsed time is 0.026188 seconds.
Run Code Online (Sandbox Code Playgroud)
当我运行代码时,我确实得到了正确的答案,但是任务的计算太多了,不管我喜欢什么.有没有更好的方法呢?特别是isband功能?如何进一步优化我的代码?
提前致谢.
正如EitanT所建议的那样,至少bwmorph已经有了你想做的事情.
如果您无权访问图像处理工具箱,或者只是坚持自己这样做:
您可以isfront使用矢量化替换三重循环
front = zeros(n,m);
zero_crossers = ...
phi(1:end-2,2:end-1).*phi(3:end,2:end-1) < 0 | ...
phi(2:end-1,1:end-2).*phi(2:end-1,3:end) < 0;
front([...
false(1,m)
false(n-2,1) zero_crossers false(n-2,1)
false(1,m) ]...
) = 100;
Run Code Online (Sandbox Code Playgroud)
你可以用isband这个循环代替:
[n,m] = size(front);
band = zeros(n,m);
[x,y] = find(front);
for ii = 1:numel(x)
band(...
max(x(ii)-width,1) : min(x(ii)+width,n),...
max(y(ii)-width,1) : min(y(ii)+width,m)) = 1;
end
Run Code Online (Sandbox Code Playgroud)
或者,正如米兰所建议的那样,您可以通过卷积应用图像扩张 :
kernel = ones(2*width+1);
band = conv2(front, kernel);
band = 100 * (band(width+1:end-width, width+1:end-width) > 0);
Run Code Online (Sandbox Code Playgroud)
哪个应该更快.
当然,您可以进行一些其他的小优化(isband不需要phi作为参数,您可以front作为逻辑数组传递,以便find更快等等).