Aka*_*all 7 python arrays numpy
假设我有以下数组:
a = np.array([[1,2,3,4,5,6],
[7,8,9,10,11,12],
[3,5,6,7,8,9]])
Run Code Online (Sandbox Code Playgroud)
我想总结第一行的前两个值:1+2 = 3,然后接下来的两个值:3+4 = 7,然后5+6 = 11,依此类推每一行.我想要的输出是这样的:
array([[ 3, 7, 11],
[15, 19, 23],
[ 8, 13, 17]])
Run Code Online (Sandbox Code Playgroud)
我有以下解决方案:
def sum_chunks(x, chunk_size):
rows, cols = x.shape
x = x.reshape(x.size / chunk_size, chunk_size)
return x.sum(axis=1).reshape(rows, cols/chunk_size)
Run Code Online (Sandbox Code Playgroud)
但感觉不必要的复杂,有更好的方法吗?也许内置?
只需使用切片:
a[:,::2] + a[:,1::2]
Run Code Online (Sandbox Code Playgroud)
这将获取由每个偶数索引列(::2)形成的数组,并将其添加到由每个奇数索引列(1::2)形成的数组中.
当我必须做这种事情时,我更喜欢将2D阵列重塑成3D阵列,然后用额外的维度折叠np.sum.将其推广到n维数组,你可以这样做:
def sum_chunk(x, chunk_size, axis=-1):
shape = x.shape
if axis < 0:
axis += x.ndim
shape = shape[:axis] + (-1, chunk_size) + shape[axis+1:]
x = x.reshape(shape)
return x.sum(axis=axis+1)
>>> a = np.arange(24).reshape(4, 6)
>>> a
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])
>>> sum_chunk(a, 2)
array([[ 1, 5, 9],
[13, 17, 21],
[25, 29, 33],
[37, 41, 45]])
>>> sum_chunk(a, 2, axis=0)
array([[ 6, 8, 10, 12, 14, 16],
[30, 32, 34, 36, 38, 40]])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4955 次 |
| 最近记录: |