met*_*ane 5 python arrays numpy
更具体地说,我有一个行/列列表,在选择最大条目时需要忽略.换句话说,当选择最大上三角形条目时,需要跳过某些索引.在这种情况下,找到最大上三角形入口位置的最有效方法是什么?
例如:
>>> a
array([[0, 1, 1, 1],
[1, 2, 3, 4],
[4, 5, 6, 6],
[4, 5, 6, 7]])
>>> indices_to_skip = [0,1,2]
Run Code Online (Sandbox Code Playgroud)
我需要找到除了条目在上部三角形的所有元素之间的最小元素的索引a[0,1]
,a[0,2]
和a[1,2]
.
你可以使用np.triu_indices_from
:
>>> np.vstack(np.triu_indices_from(a,k=1)).T
array([[0, 1],
[0, 2],
[0, 3],
[1, 2],
[1, 3],
[2, 3]])
>>> inds=inds[inds[:,1]>2] #Or whatever columns you want to start from.
>>> inds
array([[0, 3],
[1, 3],
[2, 3]])
>>> a[inds[:,0],inds[:,1]]
array([1, 4, 6])
>>> max_index = np.argmax(a[inds[:,0],inds[:,1]])
>>> inds[max_index]
array([2, 3]])
Run Code Online (Sandbox Code Playgroud)
要么:
>>> inds=np.triu_indices_from(a,k=1)
>>> mask = (inds[1]>2) #Again change 2 for whatever columns you want to start at.
>>> a[inds][mask]
array([1, 4, 6])
>>> max_index = np.argmax(a[inds][mask])
>>> inds[mask][max_index]
array([2, 3]])
Run Code Online (Sandbox Code Playgroud)
对于上述内容,您可以使用inds[0]
跳过某些行.
要跳过特定的行或列:
def ignore_upper(arr, k=0, skip_rows=None, skip_cols=None):
rows, cols = np.triu_indices_from(arr, k=k)
if skip_rows != None:
row_mask = ~np.in1d(rows, skip_rows)
rows = rows[row_mask]
cols = cols[row_mask]
if skip_cols != None:
col_mask = ~np.in1d(cols, skip_cols)
rows = rows[col_mask]
cols = cols[col_mask]
inds=np.ravel_multi_index((rows,cols),arr.shape)
return np.take(arr,inds)
print ignore_upper(a, skip_rows=1, skip_cols=2) #Will also take numpy arrays for skipping.
[0 1 1 6 7]
Run Code Online (Sandbox Code Playgroud)
这两者可以结合使用,布尔索引的创造性使用可以帮助加速特定情况.
我碰到了一些有趣的东西,一个更快的方式来获取上部triu指数:
def fast_triu_indices(dim,k=0):
tmp_range = np.arange(dim-k)
rows = np.repeat(tmp_range,(tmp_range+1)[::-1])
cols = np.ones(rows.shape[0],dtype=np.int)
inds = np.cumsum(tmp_range[1:][::-1]+1)
np.put(cols,inds,np.arange(dim*-1+2+k,1))
cols[0] = k
np.cumsum(cols,out=cols)
return (rows,cols)
Run Code Online (Sandbox Code Playgroud)
它大约快6倍,虽然它不适用于k<0
:
dim=5000
a=np.random.rand(dim,dim)
k=50
t=time.time()
rows,cols=np.triu_indices(dim,k=k)
print time.time()-t
0.913508892059
t=time.time()
rows2,cols2,=fast_triu_indices(dim,k=k)
print time.time()-t
0.16515994072
print np.allclose(rows,rows2)
True
print np.allclose(cols,cols2)
True
Run Code Online (Sandbox Code Playgroud)