use*_*424 14 c optimization sha256
我需要经常散列一个大的值数据库.因此,需要快速实现SHA-2哈希.我目前正在使用SHA256.
我现在使用的sha256_transform算法是这样的:http://bradconte.com/sha256_c (下面的代码)
我已经分析了我的代码,这段代码占用了每个哈希值的96%的计算时间,这使得这个功能对我的目标至关重要.
它在一个64字节长的二进制字符串上运行,data[]
并输出结果ctx->state
.
我要求更快版本的这个功能.请记住,即使是轻微的修改也会对速度造成负面影响.
#define uchar unsigned char
#define uint unsigned int
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
void sha256_transform(SHA256_CTX *ctx, uchar data[]) {
uint a,b,c,d,e,f,g,h,i,j,t1,t2,m[64];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i=0,j=0; i < 16; i++, j += 4)
m[i] = (data[j] << 24) | (data[j+1] << 16) | (data[j+2] << 8) | (data[j+3]);
for ( ; i < 64; i++)
m[i] = SIG1(m[i-2]) + m[i-7] + SIG0(m[i-15]) + m[i-16];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
Run Code Online (Sandbox Code Playgroud)
在cgminer(一种流行的比特币挖掘软件)中使用时,它是专门为记住性能而编写的.它包括使用SSE2的4路SIMD实现.它遵循与问题中提到的bradconte sha256_transform算法相同的方法.代码太长,无法在此重现.
此外,许可证是相当宽松的,允许重复使用/分发,只要原始作者被认可.
C语言中的SHA256性能优化...
现在,Goldmont微体系结构已经发布,它包括英特尔的SHA扩展。使用CPU指令,您可以在compress函数中获得5到6倍的加速。例如,为一个密码库提议的代码见证了以下内容(该测试在运行于1.5 GHz 的Celeron J3455上进行,但以2.3 GHz的频率突发):
$ ./botan speed --msec=3000 SHA-1 SHA-224 SHA-256
SHA-160 [base] hash 274.826 MiB/sec (824.480 MiB in 3000.009 ms)
SHA-224 [base] hash 92.349 MiB/sec (277.051 MiB in 3000.027 ms)
SHA-256 [base] hash 92.364 MiB/sec (277.094 MiB in 3000.027 ms)
Run Code Online (Sandbox Code Playgroud)
$ ./botan speed --msec=3000 SHA-1 SHA-224 SHA-256
SHA-160 [base] hash 1195.907 MiB/sec (3587.723 MiB in 3000.000 ms)
SHA-224 [base] hash 535.740 MiB/sec (1607.219 MiB in 3000.000 ms)
SHA-256 [base] hash 535.970 MiB/sec (1607.914 MiB in 3000.005 ms)
Run Code Online (Sandbox Code Playgroud)
这是使用带有内部函数的英特尔SHA扩展的SHA256压缩函数的代码。它基于Sean Gulley在Intel®SHA Extensions上的博客以及他在mitls中的示例代码。hacl-star | 实验的。
compress
下面的函数仅处理64字节的完整块。您需要设置初始状态,并且需要填充最后一块。看起来您的示例代码已涵盖了该内容。
#include <immintrin.h>
...
void compress(uint32_t state[8], const uint8_t input[], size_t blocks)
{
__m128i STATE0, STATE1;
__m128i MSG, TMP, MASK;
__m128i TMSG0, TMSG1, TMSG2, TMSG3;
__m128i ABEF_SAVE, CDGH_SAVE;
// Load initial values
TMP = _mm_loadu_si128((__m128i*) &state[0]);
STATE1 = _mm_loadu_si128((__m128i*) &state[4]);
MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH
while (blocks)
{
// Save current hash
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
// Rounds 0-3
MSG = _mm_loadu_si128((const __m128i*) (input+0));
TMSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 4-7
TMSG1 = _mm_loadu_si128((const __m128i*) (input+16));
TMSG1 = _mm_shuffle_epi8(TMSG1, MASK);
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
TMSG2 = _mm_loadu_si128((const __m128i*) (input+32));
TMSG2 = _mm_shuffle_epi8(TMSG2, MASK);
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
TMSG3 = _mm_loadu_si128((const __m128i*) (input+48));
TMSG3 = _mm_shuffle_epi8(TMSG3, MASK);
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
input += 64;
blocks--;
}
TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF
// Save state
_mm_storeu_si128((__m128i*) &state[0], STATE0);
_mm_storeu_si128((__m128i*) &state[4], STATE1);
}
Run Code Online (Sandbox Code Playgroud)
您可以在Noloader GitHub上找到Intel SHA内在函数和ARMv8 SHA内在函数的源。SHA-本征。它们是C源文件,并提供SHA-1,SHA-224和SHA-256的压缩功能。基于内在的实现对于SHA-1将吞吐量提高大约3倍至4倍,对于SHA-224和SHA-256将吞吐量提高大约6倍至12倍。
这是英特尔参考实施:
http://downloadmirror.intel.com/22357/eng/sha256_code_release_v2.zip
代码描述如下:
在基于Haswell的Xeon微处理器(E5-2650 v3)上,我的速度约为350 MB / s。它以汇编形式实现,并利用了Intel AES-NI。
更新:
SHA的最新Intel参考实现(现在是ISA-L_crypto的一部分)位于:
https://github.com/01org/isa-l_crypto/tree/master/sha256_mb
归档时间: |
|
查看次数: |
14174 次 |
最近记录: |