Python - 矢量化滑动窗口

JEq*_*hua 6 python numpy scipy

我正在尝试向量化滑动窗口操作.对于1-d案例,一个有用的例子可以遵循:

x= vstack((np.array([range(10)]),np.array([range(10)])))

x[1,:]=np.where((x[0,:]<5)&(x[0,:]>0),x[1,x[0,:]+1],x[1,:])
Run Code Online (Sandbox Code Playgroud)

index <5的每个当前值的n + 1值.但我得到这个错误:

x[1,:]=np.where((x[0,:]<2)&(x[0,:]>0),x[1,x[0,:]+1],x[1,:])
IndexError: index (10) out of range (0<=index<9) in dimension 1
Run Code Online (Sandbox Code Playgroud)

奇怪的是,我不会得到n-1值的这个错误,这意味着索引小于0.它似乎并不介意:

x[1,:]=np.where((x[0,:]<5)&(x[0,:]>0),x[1,x[0,:]-1],x[1,:])

print(x)

[[0 1 2 3 4 5 6 7 8 9]
 [0 0 1 2 3 5 6 7 8 9]]
Run Code Online (Sandbox Code Playgroud)

有没有办法解决?我的方法完全错了吗?任何意见将不胜感激.

编辑:

这就是我想要实现的目标,我将矩阵展平为一个numpy数组,我想要计算每个单元格的6x6邻域的平均值:

matriz = np.array([[1,2,3,4,5],
   [6,5,4,3,2],
   [1,1,2,2,3],
   [3,3,2,2,1],
   [3,2,1,3,2],
   [1,2,3,1,2]])

# matrix to vector
vector2 = ndarray.flatten(matriz)

ncols = int(shape(matriz)[1])
nrows = int(shape(matriz)[0])

vector = np.zeros(nrows*ncols,dtype='float64')


# Interior pixels
if ( (i % ncols) != 0 and (i+1) % ncols != 0 and i>ncols and i<ncols*(nrows-1)):

    vector[i] = np.mean(np.array([vector2[i-ncols-1],vector2[i-ncols],vector2[i-ncols+1],vector2[i-1],vector2[i+1],vector2[i+ncols-1],vector2[i+ncols],vector2[i+ncols+1]]))
Run Code Online (Sandbox Code Playgroud)

Dan*_*iel 8

如果我正确地理解了这个问题,你想在索引周围采用所有数字1的步长,而忽略索引.

我修补了你的功能,我相信你会这样做:

def original(matriz):

    vector2 = np.ndarray.flatten(matriz)

    nrows, ncols= matriz.shape
    vector = np.zeros(nrows*ncols,dtype='float64')

    # Interior pixels
    for i in range(vector.shape[0]):
        if ( (i % ncols) != 0 and (i+1) % ncols != 0 and i>ncols and i<ncols*(nrows-1)):

            vector[i] = np.mean(np.array([vector2[i-ncols-1],vector2[i-ncols],\
                        vector2[i-ncols+1],vector2[i-1],vector2[i+1],\
                        vector2[i+ncols-1],vector2[i+ncols],vector2[i+ncols+1]]))
Run Code Online (Sandbox Code Playgroud)

我使用切片和视图重写了这个:

def mean_around(arr):
    arr=arr.astype(np.float64)

    out= np.copy(arr[:-2,:-2])  #Top left corner
    out+= arr[:-2,2:]           #Top right corner
    out+= arr[:-2,1:-1]         #Top center
    out+= arr[2:,:-2]           #etc
    out+= arr[2:,2:]
    out+= arr[2:,1:-1]
    out+= arr[1:-1,2:]
    out+= arr[1:-1,:-2]

    out/=8.0    #Divide by # of elements to obtain mean

    cout=np.empty_like(arr)  #Create output array
    cout[1:-1,1:-1]=out      #Fill with out values
    cout[0,:]=0;cout[-1,:]=0;cout[:,0]=0;cout[:,-1]=0 #Set edges equal to zero

    return  cout
Run Code Online (Sandbox Code Playgroud)

使用np.empty_like然后填充边缘似乎稍快np.zeros_like.首先让我们仔细检查他们使用你的matriz数组给出相同的东西.

print np.allclose(mean_around(matriz),original(matriz))
True

print mean_around(matriz)
[[ 0.     0.     0.     0.     0.   ]
 [ 0.     2.5    2.75   3.125  0.   ]
 [ 0.     3.25   2.75   2.375  0.   ]
 [ 0.     1.875  2.     2.     0.   ]
 [ 0.     2.25   2.25   1.75   0.   ]
 [ 0.     0.     0.     0.     0.   ]]
Run Code Online (Sandbox Code Playgroud)

一些时间:

a=np.random.rand(500,500)

print np.allclose(original(a),mean_around(a))
True

%timeit mean_around(a)
100 loops, best of 3: 4.4 ms per loop

%timeit original(a)
1 loops, best of 3: 6.6 s per loop
Run Code Online (Sandbox Code Playgroud)

大约~1500倍加速.

看起来像是一个使用numba的好地方:

def mean_numba(arr):
    out=np.zeros_like(arr)
    col,rows=arr.shape

    for x in xrange(1,col-1):
        for y in xrange(1,rows-1):
            out[x,y]=(arr[x-1,y+1]+arr[x-1,y]+arr[x-1,y-1]+arr[x,y+1]+\
                      arr[x,y-1]+arr[x+1,y+1]+arr[x+1,y]+arr[x+1,y-1])/8.
    return out

nmean= autojit(mean_numba)
Run Code Online (Sandbox Code Playgroud)

现在让我们比较所有呈现的方法.

a=np.random.rand(5000,5000)

%timeit mean_around(a)
1 loops, best of 3: 729 ms per loop

%timeit nmean(a)
10 loops, best of 3: 169 ms per loop

#CT Zhu's answer
%timeit it_mean(a)
1 loops, best of 3: 36.7 s per loop

#Ali_m's answer
%timeit fast_local_mean(a,(3,3))
1 loops, best of 3: 4.7 s per loop

#lmjohns3's answer
%timeit scipy_conv(a)
1 loops, best of 3: 3.72 s per loop
Run Code Online (Sandbox Code Playgroud)

numba的4倍速度是非常标准的,表明numpy代码与它将获得的一样好.我提取了其他代码,虽然我确实必须改变@ CTZhu的答案以包含不同的数组大小.