Ric*_*ran 3 terminology machine-learning neural-network
I'm a newbie..I don't understand why we use threshold and bias in MLP (Multi-Layer Perceptron
)??What is the role of threshold, bias..And I don't know the formula of output (the result after we use the activation function, such as sigmoid) follow bias and threshold..In the same document, I see:
output_value=activation_function(summing_function+threshold) (follow Jeff Heaton)
output_value=activation_function(summing_function-threshold)(follow my teacher)
output_value=activation_function(summing_function+bias) (no problem!)
Run Code Online (Sandbox Code Playgroud)
Which is the correct??Please give me a response!
And, the bias and the threshold can exists same time in MLP??
MLP 中的偏差和阈值是相同的概念,只是同一事物的两个不同名称。符号并不重要,因为偏差可以是正的,也可以是负的(但更常见的是使用+bias)。
用最简单的术语来说 - 如果没有偏差,那么对于仅 的输入0
,您会得到summing_function=0
, 结果也是output_value=0
(因为大多数激活函数都会跨越原点)。因此,您的网络无法学习此类信号的任何其他行为,因为整个模型中只有权重发生变化。
从更数学的角度来看——这负责改变激活函数并赋予神经网络通用逼近器功能。