Gia*_*ear 7 python performance dictionary coding-style
我有一个值列表.我希望在循环期间计算每个类的元素数(即1,2,3,4,5)
mylist = [1,1,1,1,1,1,2,3,2,2,2,2,3,3,4,5,5,5,5]
mydict = dict()
for index in mylist:
mydict[index] = +1
mydict
Out[344]: {1: 1, 2: 1, 3: 1, 4: 1, 5: 1}
Run Code Online (Sandbox Code Playgroud)
我希望得到这个结果
Out[344]: {1: 6, 2: 5, 3: 3, 4: 1, 5: 4}
Run Code Online (Sandbox Code Playgroud)
小智 14
对于较小的示例,使用有限的元素,您可以使用集合和字典理解:
>>> mylist = [1,1,1,1,1,1,2,3,2,2,2,2,3,3,4,5,5,5,5]
>>> {k:mylist.count(k) for k in set(mylist)}
{1: 6, 2: 5, 3: 3, 4: 1, 5: 4}
Run Code Online (Sandbox Code Playgroud)
要打破它,set(mylist)
将列表统一并使其更紧凑:
>>> set(mylist)
set([1, 2, 3, 4, 5])
Run Code Online (Sandbox Code Playgroud)
然后字典理解逐步执行唯一值并从列表中设置计数.
这也是显著比使用计数器比存在使用它的速度越来越快:
from __future__ import print_function
from collections import Counter
from collections import defaultdict
import random
mylist=[1,1,1,1,1,1,2,3,2,2,2,2,3,3,4,5,5,5,5]*10
def s1(mylist):
return {k:mylist.count(k) for k in set(mylist)}
def s2(mlist):
return Counter(mylist)
def s3(mylist):
mydict=dict()
for index in mylist:
mydict[index] = mydict.setdefault(index, 0) + 1
return mydict
def s4(mylist):
mydict={}.fromkeys(mylist,0)
for k in mydict:
mydict[k]=mylist.count(k)
return mydict
def s5(mylist):
mydict={}
for k in mylist:
mydict[k]=mydict.get(k,0)+1
return mydict
def s6(mylist):
mydict=defaultdict(int)
for i in mylist:
mydict[i] += 1
return mydict
def s7(mylist):
mydict={}.fromkeys(mylist,0)
for e in mylist:
mydict[e]+=1
return mydict
if __name__ == '__main__':
import timeit
n=1000000
print(timeit.timeit("s1(mylist)", setup="from __main__ import s1, mylist",number=n))
print(timeit.timeit("s2(mylist)", setup="from __main__ import s2, mylist, Counter",number=n))
print(timeit.timeit("s3(mylist)", setup="from __main__ import s3, mylist",number=n))
print(timeit.timeit("s4(mylist)", setup="from __main__ import s4, mylist",number=n))
print(timeit.timeit("s5(mylist)", setup="from __main__ import s5, mylist",number=n))
print(timeit.timeit("s6(mylist)", setup="from __main__ import s6, mylist, defaultdict",number=n))
print(timeit.timeit("s7(mylist)", setup="from __main__ import s7, mylist",number=n))
Run Code Online (Sandbox Code Playgroud)
在我打印的机器上(Python 3):
18.123854104997008 # set and dict comprehension
78.54796334600542 # Counter
33.98185228800867 # setdefault
19.0563529439969 # fromkeys / count
34.54294775899325 # dict.get
21.134678319009254 # defaultdict
22.760544238000875 # fromkeys / loop
Run Code Online (Sandbox Code Playgroud)
对于较大的列表,如1000万个整数,具有更多不同的元素(1,500个随机整数),在循环中使用defaultdict或fromkeys:
from __future__ import print_function
from collections import Counter
from collections import defaultdict
import random
mylist = [random.randint(0,1500) for _ in range(10000000)]
def s1(mylist):
return {k:mylist.count(k) for k in set(mylist)}
def s2(mlist):
return Counter(mylist)
def s3(mylist):
mydict=dict()
for index in mylist:
mydict[index] = mydict.setdefault(index, 0) + 1
return mydict
def s4(mylist):
mydict={}.fromkeys(mylist,0)
for k in mydict:
mydict[k]=mylist.count(k)
return mydict
def s5(mylist):
mydict={}
for k in mylist:
mydict[k]=mydict.get(k,0)+1
return mydict
def s6(mylist):
mydict=defaultdict(int)
for i in mylist:
mydict[i] += 1
return mydict
def s7(mylist):
mydict={}.fromkeys(mylist,0)
for e in mylist:
mydict[e]+=1
return mydict
if __name__ == '__main__':
import timeit
n=1
print(timeit.timeit("s1(mylist)", setup="from __main__ import s1, mylist",number=n))
print(timeit.timeit("s2(mylist)", setup="from __main__ import s2, mylist, Counter",number=n))
print(timeit.timeit("s3(mylist)", setup="from __main__ import s3, mylist",number=n))
print(timeit.timeit("s4(mylist)", setup="from __main__ import s4, mylist",number=n))
print(timeit.timeit("s5(mylist)", setup="from __main__ import s5, mylist",number=n))
print(timeit.timeit("s6(mylist)", setup="from __main__ import s6, mylist, defaultdict",number=n))
print(timeit.timeit("s7(mylist)", setup="from __main__ import s7, mylist",number=n))
Run Code Online (Sandbox Code Playgroud)
打印:
2825.2697427899984 # set and dict comprehension
42.607481333994656 # Counter
22.77713537499949 # setdefault
2853.11187016801 # fromkeys / count
23.241977066005347 # dict.get
15.023175164998975 # defaultdict
18.28165417900891 # fromkeys / loop
Run Code Online (Sandbox Code Playgroud)
您可以看到,count
与其他解决方案相比,通过大型列表中等次数的中继解决方案将遭受严重/灾难性后果.
试试collections.Counter
:
>>> from collections import Counter
>>> Counter([1,1,1,1,1,1,2,3,2,2,2,2,3,3,4,5,5,5,5])
Counter({1: 6, 2: 5, 5: 4, 3: 3, 4: 1})
Run Code Online (Sandbox Code Playgroud)
在您的代码中,您基本上可以mydict
用a Counter
和write 替换
mydict[index] += 1
Run Code Online (Sandbox Code Playgroud)
代替
mydict[index] = +1
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4074 次 |
最近记录: |