我想使用AUC作为性能指标,但RFE仅支持RMSE,RSquared,Accuracy,Kappa.如何使用auc等自定义指标?
Dav*_*vid 15
您必须summaryFunction()在trainControl()对象中指定自定义,然后从中选择适当的部分度量标准summaryFunction().Caret还包括AUC的功能,twoClassSummary()所以你甚至没有自己的写作.这是一个例子:
> library(caret)
> iris <- iris[1:100,]
> iris$Species <- as.factor(as.character(iris$Species))
>
> tc <- trainControl(method="cv",summaryFunction=twoClassSummary,classProb=T)
> train.rf <- train(Species ~ .,data=iris, method="rf", trControl=tc, metric = "ROC")
> train.rf
100 samples
4 predictors
2 classes: 'setosa', 'versicolor'
No pre-processing
Resampling: Cross-Validation (10 fold)
Summary of sample sizes: 90, 90, 90, 90, 90, 90, ...
Resampling results across tuning parameters:
mtry ROC Sens Spec ROC SD Sens SD Spec SD
2 1 1 1 0 0 0
3 1 1 1 0 0 0
4 1 1 1 0 0 0
ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
Run Code Online (Sandbox Code Playgroud)
编辑:刚刚意识到你想要它rfe()- 同样的事情成立但你必须以相同的方式编辑rfeFuncs对象的"summary"元素.例如:
rfFuncs$summary <- twoClassSummary
rfe(iris[,-5],iris[,5],rfeControl = rfeControl(rfFuncs), s=2:3,metric="ROC")
Recursive feature selection
Outer resampling method: Bootstrap (25 reps)
Resampling performance over subset size:
Variables ROC Sens Spec ROCSD SensSD SpecSD Selected
2 1 1 1 0 0 0 *
3 1 1 1 0 0 0
4 1 1 1 0 0 0
The top 2 variables (out of 2):
Petal.Width, Petal.Lengt
Run Code Online (Sandbox Code Playgroud)