如何使用任意法线将matplotlib 2D贴片转换为3D?

Til*_*ann 10 3d matplotlib

简短的问题

如何使用任意法线将matplotlib 2D贴片转换为3D?

很长的问题

我想用3D投影在轴上绘制补丁.但是,mpl_toolkits.mplot3d.art3d提供的方法仅提供了沿主轴具有法线的补丁的方法.如何向具有任意法线的3d轴添加补丁?

Til*_*ann 13

简短的回答

将下面的代码复制到您的项目中并使用该方法

def pathpatch_2d_to_3d(pathpatch, z = 0, normal = 'z'):
    """
    Transforms a 2D Patch to a 3D patch using the given normal vector.

    The patch is projected into they XY plane, rotated about the origin
    and finally translated by z.
    """
Run Code Online (Sandbox Code Playgroud)

将2D补丁转换为具有任意法线的3D补丁.

from mpl_toolkits.mplot3d import art3d

def rotation_matrix(d):
    """
    Calculates a rotation matrix given a vector d. The direction of d
    corresponds to the rotation axis. The length of d corresponds to 
    the sin of the angle of rotation.

    Variant of: http://mail.scipy.org/pipermail/numpy-discussion/2009-March/040806.html
    """
    sin_angle = np.linalg.norm(d)

    if sin_angle == 0:
        return np.identity(3)

    d /= sin_angle

    eye = np.eye(3)
    ddt = np.outer(d, d)
    skew = np.array([[    0,  d[2],  -d[1]],
                  [-d[2],     0,  d[0]],
                  [d[1], -d[0],    0]], dtype=np.float64)

    M = ddt + np.sqrt(1 - sin_angle**2) * (eye - ddt) + sin_angle * skew
    return M

def pathpatch_2d_to_3d(pathpatch, z = 0, normal = 'z'):
    """
    Transforms a 2D Patch to a 3D patch using the given normal vector.

    The patch is projected into they XY plane, rotated about the origin
    and finally translated by z.
    """
    if type(normal) is str: #Translate strings to normal vectors
        index = "xyz".index(normal)
        normal = np.roll((1.0,0,0), index)

    normal /= np.linalg.norm(normal) #Make sure the vector is normalised

    path = pathpatch.get_path() #Get the path and the associated transform
    trans = pathpatch.get_patch_transform()

    path = trans.transform_path(path) #Apply the transform

    pathpatch.__class__ = art3d.PathPatch3D #Change the class
    pathpatch._code3d = path.codes #Copy the codes
    pathpatch._facecolor3d = pathpatch.get_facecolor #Get the face color    

    verts = path.vertices #Get the vertices in 2D

    d = np.cross(normal, (0, 0, 1)) #Obtain the rotation vector    
    M = rotation_matrix(d) #Get the rotation matrix

    pathpatch._segment3d = np.array([np.dot(M, (x, y, 0)) + (0, 0, z) for x, y in verts])

def pathpatch_translate(pathpatch, delta):
    """
    Translates the 3D pathpatch by the amount delta.
    """
    pathpatch._segment3d += delta
Run Code Online (Sandbox Code Playgroud)

答案很长

查看art3d.pathpatch_2d_to_3d的源代码,给出以下调用层次结构

  1. art3d.pathpatch_2d_to_3d
  2. art3d.PathPatch3D.set_3d_properties
  3. art3d.Patch3D.set_3d_properties
  4. art3d.juggle_axes

从2D到3D的转换发生在最后一次调用中art3d.juggle_axes.修改最后一步,我们可以使用任意法线获得3D补丁.

我们分四步进行

  1. 将贴片的顶点投影到XY平面(pathpatch_2d_to_3d)
  2. 计算将z方向旋转到法线方向的旋转矩阵R(rotation_matrix)
  3. 将旋转矩阵应用于所有顶点(pathpatch_2d_to_3d)
  4. 在z方向上翻译生成的对象(pathpatch_2d_to_3d)

示例源代码和结果图如下所示.

from mpl_toolkits.mplot3d import proj3d
from matplotlib.patches import Circle
from itertools import product

ax = axes(projection = '3d') #Create axes

p = Circle((0,0), .2) #Add a circle in the yz plane
ax.add_patch(p)
pathpatch_2d_to_3d(p, z = 0.5, normal = 'x')
pathpatch_translate(p, (0, 0.5, 0))

p = Circle((0,0), .2, facecolor = 'r') #Add a circle in the xz plane
ax.add_patch(p)
pathpatch_2d_to_3d(p, z = 0.5, normal = 'y')
pathpatch_translate(p, (0.5, 1, 0))

p = Circle((0,0), .2, facecolor = 'g') #Add a circle in the xy plane
ax.add_patch(p)
pathpatch_2d_to_3d(p, z = 0, normal = 'z')
pathpatch_translate(p, (0.5, 0.5, 0))

for normal in product((-1, 1), repeat = 3):
    p = Circle((0,0), .2, facecolor = 'y', alpha = .2)
    ax.add_patch(p)
    pathpatch_2d_to_3d(p, z = 0, normal = normal)
    pathpatch_translate(p, 0.5)
Run Code Online (Sandbox Code Playgroud)

结果情节


T. *_*age 5

非常有用的一段代码,但有一个小警告:它不能处理指向下方的法线,因为它只使用角度的正弦。

您还需要使用余弦:

from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import art3d
from mpl_toolkits.mplot3d import proj3d
import numpy as np

def rotation_matrix(v1,v2):
    """
    Calculates the rotation matrix that changes v1 into v2.
    """
    v1/=np.linalg.norm(v1)
    v2/=np.linalg.norm(v2)

    cos_angle=np.dot(v1,v2)
    d=np.cross(v1,v2)
    sin_angle=np.linalg.norm(d)

    if sin_angle == 0:
        M = np.identity(3) if cos_angle>0. else -np.identity(3)
    else:
        d/=sin_angle

        eye = np.eye(3)
        ddt = np.outer(d, d)
        skew = np.array([[    0,  d[2],  -d[1]],
                      [-d[2],     0,  d[0]],
                      [d[1], -d[0],    0]], dtype=np.float64)

        M = ddt + cos_angle * (eye - ddt) + sin_angle * skew

    return M

def pathpatch_2d_to_3d(pathpatch, z = 0, normal = 'z'):
    """
    Transforms a 2D Patch to a 3D patch using the given normal vector.

    The patch is projected into they XY plane, rotated about the origin
    and finally translated by z.
    """
    if type(normal) is str: #Translate strings to normal vectors
        index = "xyz".index(normal)
        normal = np.roll((1,0,0), index)

    path = pathpatch.get_path() #Get the path and the associated transform
    trans = pathpatch.get_patch_transform()

    path = trans.transform_path(path) #Apply the transform

    pathpatch.__class__ = art3d.PathPatch3D #Change the class
    pathpatch._code3d = path.codes #Copy the codes
    pathpatch._facecolor3d = pathpatch.get_facecolor #Get the face color    

    verts = path.vertices #Get the vertices in 2D

    M = rotation_matrix(normal,(0, 0, 1)) #Get the rotation matrix

    pathpatch._segment3d = np.array([np.dot(M, (x, y, 0)) + (0, 0, z) for x, y in verts])

def pathpatch_translate(pathpatch, delta):
    """
    Translates the 3D pathpatch by the amount delta.
    """
    pathpatch._segment3d += delta
Run Code Online (Sandbox Code Playgroud)