Paw*_*ian 3 python binning dataframe pandas
我正在努力完成这样的任务:我需要从数据框中离散化列中的值,并根据其他列中的值进行容器定义。
对于一个最小的工作示例,让我们定义一个简单的数据框:
import pandas as pd
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,'B' : np.random.randn(12)})
Run Code Online (Sandbox Code Playgroud)
数据框如下所示:
A B
0 one 2.5772143847077427
1 one -0.6394141654096013
2 two 0.964652049995486
3 three -0.3922889559403503
4 one 1.6903991754896424
5 one 0.5741442025742018
6 two 0.6300564981683544
7 three 0.9403680915507433
8 one 0.7044433078166983
9 one -0.1695006646595688
10 two 0.06376190217285167
11 three 0.277540580579127
Run Code Online (Sandbox Code Playgroud)
现在我想介绍column C,它将包含一个bin标签,column中的每个值都有不同的bin A,即:
(-10,-1,0,1,10)为了A == 'one',(-100,0,100)为了A == 'two',(-999,0,1,2,3)为了A == 'three'。期望的输出是:
A B C
0 one 2.5772143847077427 (1, 10]
1 one -0.6394141654096013 (-1, 0]
2 two 0.964652049995486 (0, 100]
3 three -0.3922889559403503 (-999, 0]
4 one 1.6903991754896424 (1, 10]
5 one 0.5741442025742018 (0, 1]
6 two 0.6300564981683544 (0, 100]
7 three 0.9403680915507433 (0, 1]
8 one 0.7044433078166983 (0, 1]
9 one -0.1695006646595688 (-1, 0]
10 two 0.06376190217285167 (0, 100]
11 three 0.277540580579127 (0, 1]
Run Code Online (Sandbox Code Playgroud)
我尝试过使用pd.cut或np.digitize的不同组合map,apply但没有成功。
目前,我通过分割框架并pd.cut分别应用于每个子集,然后合并以恢复框架来实现结果,如下所示:
values_in_column_A = df['A'].unique().tolist()
bins = {'one':(-10,-1,0,1,10),'two':(-100,0,100),'three':(-999,0,1,2,3)}
def binnize(df):
subdf = []
for i in range(len(values_in_column_A)):
subdf.append(df[df['A'] == values_in_column_A[i]])
subdf[i]['C'] = pd.cut(subdf[i]['B'],bins[values_in_column_A[i]])
return pd.concat(subdf)
Run Code Online (Sandbox Code Playgroud)
这是可行的,但我认为它不够优雅,当我拥有数百万行的帧时,我还预计生产中会出现一些速度或内存问题。说实话,我想这可以做得更好。
我将不胜感激任何帮助或想法......
这能解决您的问题吗?
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
'B' : np.random.randn(12)})
bins = {'one': (-10,-1,0,1,10), 'two':(-100,0,100), 'three':(-999,0,1,2,3)}
def func(row):
return pd.cut([row['B']], bins=bins[row['A']])[0]
df['C'] = df.apply(func, axis=1)
Run Code Online (Sandbox Code Playgroud)
这将返回一个数据帧:
A B C
0 one 1.440957 (1, 10]
1 one 0.394580 (0, 1]
2 two -0.039619 (-100, 0]
3 three -0.500325 (-999, 0]
4 one 0.497256 (0, 1]
5 one 0.342222 (0, 1]
6 two -0.968390 (-100, 0]
7 three -0.772321 (-999, 0]
8 one 0.803178 (0, 1]
9 one 0.201513 (0, 1]
10 two 1.178546 (0, 100]
11 three -0.149662 (-999, 0]
Run Code Online (Sandbox Code Playgroud)
binnize 的更快版本:
def binize2(df):
df['C'] = ''
for key, values in bins.items():
mask = df['A'] == key
df.loc[mask, 'C'] = pd.cut(df.loc[mask, 'B'], bins=values)
%%timeit
df3 = binnize(df1)
10 loops, best of 3: 56.2 ms per loop
%%timeit
binize2(df2)
100 loops, best of 3: 6.64 ms per loop
Run Code Online (Sandbox Code Playgroud)
这可能是因为它就地更改了 DataFrame 并且没有创建新的 DataFrame。
| 归档时间: |
|
| 查看次数: |
4628 次 |
| 最近记录: |