如何指定设置为插入符号的验证保持

Dav*_*vid 4 r resampling cross-validation r-caret

我真的很喜欢使用插入符号至少在建模的早期阶段,特别是因为它非常容易使用重采样方法.然而,我正在开发一个模型,其中训练集通过半监督自我训练添加了相当数量的案例,并且我的交叉验证结果因此而真正偏离.我对此的解决方案是使用验证集来测量模型性能,但我看不到直接在插入符中使用验证集的方法 - 我是否遗漏了某些东西或者这只是不支持?我知道我可以编写自己的包装器去做插入符号通常用于m的插件,但是如果有一个解决方法而不必这样做会非常好.

以下是我遇到的一个简单例子:

> library(caret)
> set.seed(1)
> 
> #training/validation sets
> i <- sample(150,50)
> train <- iris[-i,]
> valid <- iris[i,]
> 
> #make my model
> tc <- trainControl(method="cv")
> model.rf <- train(Species ~ ., data=train,method="rf",trControl=tc)
> 
> #model parameters are selected using CV results...
> model.rf
100 samples
  4 predictors
  3 classes: 'setosa', 'versicolor', 'virginica' 

No pre-processing
Resampling: Cross-Validation (10 fold) 

Summary of sample sizes: 90, 90, 90, 89, 90, 92, ... 

Resampling results across tuning parameters:

  mtry  Accuracy  Kappa  Accuracy SD  Kappa SD
  2     0.971     0.956  0.0469       0.0717  
  3     0.971     0.956  0.0469       0.0717  
  4     0.971     0.956  0.0469       0.0717  

Accuracy was used to select the optimal model using  the largest value.
The final value used for the model was mtry = 2. 
> 
> #have to manually check validation set
> valid.pred <- predict(model.rf,valid)
> table(valid.pred,valid$Species)

valid.pred   setosa versicolor virginica
  setosa         17          0         0
  versicolor      0         20         1
  virginica       0          2        10
> mean(valid.pred==valid$Species)
[1] 0.94
Run Code Online (Sandbox Code Playgroud)

我原本以为我可以通过summaryFunction()trainControl()对象创建自定义来实现这一点,但我无法看到如何引用我的模型对象以从验证集获取预测(文档 - http://caret.r-forge.r-project.org /training.html - 仅列出"data","lev"和"model"作为可能的参数.例如,这显然不起作用:

tc$summaryFunction <- function(data, lev = NULL, model = NULL){
  data.frame(Accuracy=mean(predict(<model object>,valid)==valid$Species))
}
Run Code Online (Sandbox Code Playgroud)

编辑:为了尝试提出一个真正丑陋的修复,我一直在寻找是否可以从另一个函数的范围访问模型对象,但我甚至没有看到它们存储在任何地方的模型.希望有一些优雅的解决方案,我甚至没有接近看到......

> tc$summaryFunction <- function(data, lev = NULL, model = NULL){
+   browser()
+   data.frame(Accuracy=mean(predict(model,valid)==valid$Species))
+ }
> train(Species ~ ., data=train,method="rf",trControl=tc)
note: only 1 unique complexity parameters in default grid. Truncating the grid to 1 .

Called from: trControl$summaryFunction(testOutput, classLevels, method)
Browse[1]> lapply(sys.frames(),function(x) ls(envi=x))
[[1]]
[1] "x"

[[2]]
 [1] "cons"      "contrasts" "data"      "form"      "m"         "na.action" "subset"   
 [8] "Terms"     "w"         "weights"   "x"         "xint"      "y"        

[[3]]
[1] "x"

[[4]]
 [1] "classLevels" "funcCall"    "maximize"    "method"      "metric"      "modelInfo"  
 [7] "modelType"   "paramCols"   "ppMethods"   "preProcess"  "startTime"   "testOutput" 
[13] "trainData"   "trainInfo"   "trControl"   "tuneGrid"    "tuneLength"  "weights"    
[19] "x"           "y"          

[[5]]
[1] "data"  "lev"   "model"
Run Code Online (Sandbox Code Playgroud)

top*_*epo 7

看看trainControl.现在有选项可以直接指定用于建模数据(index参数)的数据行,以及应该使用哪些行来计算保留估计值(被调用indexOut).我认为那就是你要找的东西.

马克斯