Ben*_*Ben 60 c integer bit-manipulation overflow multiplication
我正在寻找一种有效(可选的标准,优雅且易于实现)的解决方案来乘以相对较大的数字,并将结果存储为一个或多个整数:
假设我有两个64位整数,如下所示:
uint64_t a = xxx, b = yyy; 
当我这样做时a * b,如何检测操作是否导致溢出,并且在这种情况下将进位存储在某处?
请注意,我不想使用任何大号库,因为我对存储数字的方式有限制.
mer*_*ike 73
1.检测溢出:
x = a * b;
if (a != 0 && x / a != b) {
    // overflow handling
}
编辑:修正分区0(谢谢马克!)
2.计算进位非常复杂.一种方法是将两个操作数分成半字,然后对半字应用长乘法:
uint64_t hi(uint64_t x) {
    return x >> 32;
}
uint64_t lo(uint64_t x) {
    return ((1L << 32) - 1) & x;
}
void multiply(uint64_t a, uint64_t b) {
    // actually uint32_t would do, but the casting is annoying
    uint64_t s0, s1, s2, s3; 
    uint64_t x = lo(a) * lo(b);
    s0 = lo(x);
    x = hi(a) * lo(b) + hi(x);
    s1 = lo(x);
    s2 = hi(x);
    x = s1 + lo(a) * hi(b);
    s1 = lo(x);
    x = s2 + hi(a) * hi(b) + hi(x);
    s2 = lo(x);
    s3 = hi(x);
    uint64_t result = s1 << 32 | s0;
    uint64_t carry = s3 << 32 | s2;
}
要看到没有任何部分和本身可以溢出,我们考虑最坏的情况:
        x = s2 + hi(a) * hi(b) + hi(x)
我们B = 1 << 32.然后我们有
            x <= (B - 1) + (B - 1)(B - 1) + (B - 1)
              <= B*B - 1
               < B*B
我相信这会起作用 - 至少它会处理Sjlver的测试用例.除此之外,它是未经测试的(甚至可能不编译,因为我不再有手头的C++编译器).
ser*_*gtk 32
这个想法是使用以下事实,这对于积分操作是正确的:
a*b > c 当且仅当 a > c/b
/ 是这里不可分割的一部
检查正数溢出的伪代码如下:
if(a> max_int64/b)然后"溢出"否则"ok".
要处理零和负数,您应该添加更多检查.
对于非负的C代码a和b如下:
if (b > 0 && a > 18446744073709551615 / b) {
     // overflow handling
}; else {
    c = a * b;
}
注意:
18446744073709551615 == (1<<64)-1
为了计算进位,我们可以使用方法将数字分成两个32位数,然后将它们相乘,就像我们在纸上做的那样.我们需要拆分数字以避免溢出.
代码如下:
// split input numbers into 32-bit digits
uint64_t a0 = a & ((1LL<<32)-1);
uint64_t a1 = a >> 32;
uint64_t b0 = b & ((1LL<<32)-1);
uint64_t b1 = b >> 32;
// The following 3 lines of code is to calculate the carry of d1
// (d1 - 32-bit second digit of result, and it can be calculated as d1=d11+d12),
// but to avoid overflow.
// Actually rewriting the following 2 lines:
// uint64_t d1 = (a0 * b0 >> 32) + a1 * b0 + a0 * b1;
// uint64_t c1 = d1 >> 32;
uint64_t d11 = a1 * b0 + (a0 * b0 >> 32); 
uint64_t d12 = a0 * b1;
uint64_t c1 = (d11 > 18446744073709551615 - d12) ? 1 : 0;
uint64_t d2 = a1 * b1 + c1;
uint64_t carry = d2; // needed carry stored here
Cha*_*acy 26
虽然这个问题还有其他几个答案,但我有几个代码完全没有经过测试,到目前为止还没有人能够充分比较不同的可能选项.
出于这个原因,我写了并测试多种可能的实现(最后一个是基于该代码来自OpenBSD,Reddit上讨论这里).这是代码:
/* Multiply with overflow checking, emulating clang's builtin function
 *
 *     __builtin_umull_overflow
 *
 * This code benchmarks five possible schemes for doing so.
 */
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#ifndef BOOL
    #define BOOL int
#endif
// Option 1, check for overflow a wider type
//    - Often fastest and the least code, especially on modern compilers
//    - When long is a 64-bit int, requires compiler support for 128-bits
//      ints (requires GCC >= 3.0 or Clang)
#if LONG_BIT > 32
    typedef __uint128_t long_overflow_t ;
#else
    typedef uint64_t long_overflow_t;
#endif
BOOL 
umull_overflow1(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
        long_overflow_t prod = (long_overflow_t)lhs * (long_overflow_t)rhs;
        *result = (unsigned long) prod;
        return (prod >> LONG_BIT) != 0;
}
// Option 2, perform long multiplication using a smaller type
//    - Sometimes the fastest (e.g., when mulitply on longs is a library
//      call).
//    - Performs at most three multiplies, and sometimes only performs one.
//    - Highly portable code; works no matter how many bits unsigned long is
BOOL 
umull_overflow2(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
        const unsigned long HALFSIZE_MAX = (1ul << LONG_BIT/2) - 1ul;
        unsigned long lhs_high = lhs >> LONG_BIT/2;
        unsigned long lhs_low  = lhs & HALFSIZE_MAX;
        unsigned long rhs_high = rhs >> LONG_BIT/2;
        unsigned long rhs_low  = rhs & HALFSIZE_MAX;
        unsigned long bot_bits = lhs_low * rhs_low;
        if (!(lhs_high || rhs_high)) {
            *result = bot_bits;
            return 0; 
        }
        BOOL overflowed = lhs_high && rhs_high;
        unsigned long mid_bits1 = lhs_low * rhs_high;
        unsigned long mid_bits2 = lhs_high * rhs_low;
        *result = bot_bits + ((mid_bits1+mid_bits2) << LONG_BIT/2);
        return overflowed || *result < bot_bits
            || (mid_bits1 >> LONG_BIT/2) != 0
            || (mid_bits2 >> LONG_BIT/2) != 0;
}
// Option 3, perform long multiplication using a smaller type (this code is
// very similar to option 2, but calculates overflow using a different but
// equivalent method).
//    - Sometimes the fastest (e.g., when mulitply on longs is a library
//      call; clang likes this code).
//    - Performs at most three multiplies, and sometimes only performs one.
//    - Highly portable code; works no matter how many bits unsigned long is
BOOL 
umull_overflow3(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
        const unsigned long HALFSIZE_MAX = (1ul << LONG_BIT/2) - 1ul;
        unsigned long lhs_high = lhs >> LONG_BIT/2;
        unsigned long lhs_low  = lhs & HALFSIZE_MAX;
        unsigned long rhs_high = rhs >> LONG_BIT/2;
        unsigned long rhs_low  = rhs & HALFSIZE_MAX;
        unsigned long lowbits = lhs_low * rhs_low;
        if (!(lhs_high || rhs_high)) {
            *result = lowbits;
            return 0; 
        }
        BOOL overflowed = lhs_high && rhs_high;
        unsigned long midbits1 = lhs_low * rhs_high;
        unsigned long midbits2 = lhs_high * rhs_low;
        unsigned long midbits  = midbits1 + midbits2;
        overflowed = overflowed || midbits < midbits1 || midbits > HALFSIZE_MAX;
        unsigned long product = lowbits + (midbits << LONG_BIT/2);
        overflowed = overflowed || product < lowbits;
        *result = product;
        return overflowed;
}
// Option 4, checks for overflow using division
//    - Checks for overflow using division
//    - Division is slow, especially if it is a library call
BOOL
umull_overflow4(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
        *result = lhs * rhs;
        return rhs > 0 && (SIZE_MAX / rhs) < lhs;
}
// Option 5, checks for overflow using division
//    - Checks for overflow using division
//    - Avoids division when the numbers are "small enough" to trivially
//      rule out overflow
//    - Division is slow, especially if it is a library call
BOOL
umull_overflow5(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
        const unsigned long MUL_NO_OVERFLOW = (1ul << LONG_BIT/2) - 1ul;
        *result = lhs * rhs;
        return (lhs >= MUL_NO_OVERFLOW || rhs >= MUL_NO_OVERFLOW) &&
            rhs > 0 && SIZE_MAX / rhs < lhs;
}
#ifndef umull_overflow
    #define umull_overflow2
#endif
/*
 * This benchmark code performs a multiply at all bit sizes, 
 * essentially assuming that sizes are logarithmically distributed.
 */
int main()
{
        unsigned long i, j, k;
        int count = 0;
        unsigned long mult;
        unsigned long total = 0;
        for (k = 0; k < 0x40000000 / LONG_BIT / LONG_BIT; ++k)
                for (i = 0; i != LONG_MAX; i = i*2+1)
                        for (j = 0; j != LONG_MAX; j = j*2+1) {
                                count += umull_overflow(i+k, j+k, &mult);
                                total += mult;
                        }
        printf("%d overflows (total %lu)\n", count, total);
}
以下是结果,使用我所拥有的各种编译器和系统进行测试(在这种情况下,所有测试都是在OS X上完成的,但结果在BSD或Linux系统上应该类似):
+------------------+----------+----------+----------+----------+----------+
|                  | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 |
|                  |  BigInt  | LngMult1 | LngMult2 |   Div    |  OptDiv  |
+------------------+----------+----------+----------+----------+----------+
| Clang 3.5 i386   |    1.610 |    3.217 |    3.129 |    4.405 |    4.398 |
| GCC 4.9.0 i386   |    1.488 |    3.469 |    5.853 |    4.704 |    4.712 |
| GCC 4.2.1 i386   |    2.842 |    4.022 |    3.629 |    4.160 |    4.696 |
| GCC 4.2.1 PPC32  |    8.227 |    7.756 |    7.242 |   20.632 |   20.481 |
| GCC 3.3   PPC32  |    5.684 |    9.804 |   11.525 |   21.734 |   22.517 |
+------------------+----------+----------+----------+----------+----------+
| Clang 3.5 x86_64 |    1.584 |    2.472 |    2.449 |    9.246 |    7.280 |
| GCC 4.9 x86_64   |    1.414 |    2.623 |    4.327 |    9.047 |    7.538 |
| GCC 4.2.1 x86_64 |    2.143 |    2.618 |    2.750 |    9.510 |    7.389 |
| GCC 4.2.1 PPC64  |   13.178 |    8.994 |    8.567 |   37.504 |   29.851 |
+------------------+----------+----------+----------+----------+----------+
基于这些结果,我们可以得出一些结论:
在== 0时也适用的版本:
    x = a * b;
    if (a != 0 && x / a != b) {
        // overflow handling
    }
如果您不仅需要检测溢出而且还需要捕获进位,那么最好将数字分解为32位部分.代码是一场噩梦; 以下只是草图:
#include <stdint.h>
uint64_t mul(uint64_t a, uint64_t b) {
  uint32_t ah = a >> 32;
  uint32_t al = a;  // truncates: now a = al + 2**32 * ah
  uint32_t bh = b >> 32;
  uint32_t bl = b;  // truncates: now b = bl + 2**32 * bh
  // a * b = 2**64 * ah * bh + 2**32 * (ah * bl + bh * al) + al * bl
  uint64_t partial = (uint64_t) al * (uint64_t) bl;
  uint64_t mid1    = (uint64_t) ah * (uint64_t) bl;
  uint64_t mid2    = (uint64_t) al * (uint64_t) bh;
  uint64_t carry   = (uint64_t) ah * (uint64_t) bh;
  // add high parts of mid1 and mid2 to carry
  // add low parts of mid1 and mid2 to partial, carrying
  //    any carry bits into carry...
}
问题不仅仅是部分产品,而是任何总和可能溢出的事实.
如果我必须真正做到这一点,我会用本地汇编语言编写扩展乘法例程. 也就是说,例如,将两个64位整数相乘以获得128位结果,该结果存储在两个64位寄存器中.所有合理的硬件都在单个本机乘法指令中提供此功能 - 它不仅可以从C访问.
这是一种极少数情况,其中最优雅且易于编程的解决方案实际上是使用汇编语言.但它肯定不便携:-(
小智 5
使用 clang 和 gcc 简单快速:
unsigned long long t a, b, result;
if (__builtin_umulll_overflow(a, b, &result)) {
    // overflow!!
}
这将在可用的情况下使用硬件支持溢出检测。作为编译器扩展,它甚至可以处理有符号整数溢出(用 smul 替换 umul),即使这是 C++ 中未定义的行为。
| 归档时间: | 
 | 
| 查看次数: | 50064 次 | 
| 最近记录: |