Art*_*ose 3 r nonlinear-functions nonlinear-optimization model-fitting levenberg-marquardt
我试图重现Kostakis的纸张解决方案.在本文中,使用de Heligman-Pollard模型将删节死亡率表扩展为完整的生命表.该模型有8个参数必须安装.作者使用了改进的Gauss-Newton算法; 该算法(E04FDF)是NAG计算机程序库的一部分.Levenberg Marquardt不应该产生相同的参数集吗?我的代码或LM算法的应用有什么问题?
library(minpack.lm)
## Heligman-Pollard is used to expand an abridged table.
## nonlinear least squares algorithm is used to fit the parameters on nqx observed over 5 year intervals (5qx)
AGE <- c(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70)
MORTALITY <- c(0.010384069, 0.001469140, 0.001309318, 0.003814265, 0.005378395, 0.005985625, 0.006741766, 0.009325056, 0.014149626, 0.021601755, 0.034271934, 0.053836246, 0.085287751, 0.136549522, 0.215953304)
## The start parameters for de Heligman-Pollard Formula (Converged set a=0.0005893,b=0.0043836,c=0.0828424,d=0.000706,e=9.927863,f=22.197312,g=0.00004948,h=1.10003)
## I modified a random parameter "a" in order to have a start values. The converged set is listed above.
parStart <- list(a=0.0008893,b=0.0043836,c=0.0828424,d=0.000706,e=9.927863,f=22.197312,g=0.00004948,h=1.10003)
## The Heligman-Pollard Formula (HP8) = qx/px = ...8 parameter equation
HP8 <-function(parS,x)
ifelse(x==0, parS$a^((x+parS$b)^parS$c) + parS$g*parS$h^x,
parS$a^((x+parS$b)^parS$c) + parS$d*exp(-parS$e*(log(x/parS$f))^2) +
parS$g*parS$h^x)
## Define qx = HP8/(1+HP8)
qxPred <- function(parS,x) HP8(parS,x)/(1+HP8(parS,x))
## Calculate nqx predicted by HP8 model (nqxPred(parStart,x))
nqxPred <- function(parS,x)
(1 -(1-qxPred(parS,x)) * (1-qxPred(parS,x+1)) *
(1-qxPred(parS,x+2)) * (1-qxPred(parS,x+3)) *
(1-qxPred(parS,x+4)))
##Define Residual Function, the relative squared distance is minimized
ResidFun <- function(parS, Observed,x) (nqxPred(parS,x)/Observed-1)^2
## Applying the nls.lm algo.
nls.out <- nls.lm(par=parStart, fn = ResidFun, Observed = MORTALITY, x = AGE,
control = nls.lm.control(nprint=1,
ftol = .Machine$double.eps,
ptol = .Machine$double.eps,
maxfev=10000, maxiter = 500))
summary(nls.out)
## The author used a modified Gauss-Newton algorithm, this alogorithm (E04FDF) is part of the NAG library of computer programs
## Should not Levenberg Marquardt yield the same set of parameters
Run Code Online (Sandbox Code Playgroud)
Ben*_*ker 12
这里的底线是@Roland是绝对正确的,这是一个非常不适合的问题,你不一定希望得到可靠的答案.我在下面
ResidFun返回残差,而不是残差平方.(前者是正确的,但这并没有太大区别.)加载包:
library(minpack.lm)
Run Code Online (Sandbox Code Playgroud)
数据,作为数据框:
d <- data.frame(
AGE = seq(0,70,by=5),
MORTALITY=c(0.010384069, 0.001469140, 0.001309318, 0.003814265,
0.005378395, 0.005985625, 0.006741766, 0.009325056,
0.014149626, 0.021601755, 0.034271934, 0.053836246,
0.085287751, 0.136549522, 0.215953304))
Run Code Online (Sandbox Code Playgroud)
首先查看数据:
library(ggplot2)
(g1 <- ggplot(d,aes(AGE,MORTALITY))+geom_point())
g1+geom_smooth() ## with loess fit
Run Code Online (Sandbox Code Playgroud)
参数选择:
据推测这些是原始论文中的参数......
parConv <- c(a=0.0005893,b=0.0043836,c=0.0828424,
d=0.000706,e=9.927863,f=22.197312,g=0.00004948,h=1.10003)
Run Code Online (Sandbox Code Playgroud)
扰动参数:
parStart <- parConv
parStart["a"] <- parStart["a"]+3e-4
Run Code Online (Sandbox Code Playgroud)
公式:
HP8 <-function(parS,x)
with(as.list(parS),
ifelse(x==0, a^((x+b)^c) + g*h^x,
a^((x+b)^c) + d*exp(-e*(log(x/f))^2) + g*h^x))
## Define qx = HP8/(1+HP8)
qxPred <- function(parS,x) {
h <- HP8(parS,x)
h/(1+h)
}
## Calculate nqx predicted by HP8 model (nqxPred(parStart,x))
nqxPred <- function(parS,x)
(1 -(1-qxPred(parS,x)) * (1-qxPred(parS,x+1)) *
(1-qxPred(parS,x+2)) * (1-qxPred(parS,x+3)) *
(1-qxPred(parS,x+4)))
##Define Residual Function, the relative squared distance is minimized
ResidFun <- function(parS, Observed,x) (nqxPred(parS,x)/Observed-1)
Run Code Online (Sandbox Code Playgroud)
这是从OP的版本略有改变; nls.lm想要残差,而不是残差平方.
与其他优化器一起使用的平方和函数:
ssqfun <- function(parS, Observed, x) {
sum(ResidFun(parS, Observed, x)^2)
}
Run Code Online (Sandbox Code Playgroud)
申请nls.lm.(不确定为什么ftol 和ptol降低sqrt(.Machine$double.eps)到.Machine$double.eps- 前者通常是对精度的实际限制......
nls.out <- nls.lm(par=parStart, fn = ResidFun,
Observed = d$MORTALITY, x = d$AGE,
control = nls.lm.control(nprint=0,
ftol = .Machine$double.eps,
ptol = .Machine$double.eps,
maxfev=10000, maxiter = 1000))
parNLS <- coef(nls.out)
pred0 <- nqxPred(as.list(parConv),d$AGE)
pred1 <- nqxPred(as.list(parNLS),d$AGE)
dPred <- with(d,rbind(data.frame(AGE,MORTALITY=pred0,w="conv"),
data.frame(AGE,MORTALITY=pred1,w="nls")))
g1 + geom_line(data=dPred,aes(colour=w))
Run Code Online (Sandbox Code Playgroud)
线条难以区分,但参数有一些很大的差异:
round(cbind(parNLS,parConv),5)
## parNLS parConv
## a 1.00000 0.00059
## b 50.46708 0.00438
## c 3.56799 0.08284
## d 0.00072 0.00071
## e 6.05200 9.92786
## f 21.82347 22.19731
## g 0.00005 0.00005
## h 1.10026 1.10003
Run Code Online (Sandbox Code Playgroud)
d,f,g,h接近,但a,b,c是不同的数量级,e是50%不同.
看看原始方程式,这里发生的是a^((x+b)^c)设置为常数,因为a接近1:一次a约为1,b并且c基本上是不相关的.
让我们检查相关性(我们需要一个广义逆,因为矩阵是如此强相关):
obj <- nls.out
vcov <- with(obj,deviance/(length(fvec) - length(par)) *
MASS::ginv(hessian))
cmat <- round(cov2cor(vcov),1)
dimnames(cmat) <- list(letters[1:8],letters[1:8])
## a b c d e f g h
## a 1.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0
## b 0.0 1.0 -1.0 1.0 -1.0 -1.0 -0.4 -1.0
## c 0.0 -1.0 1.0 -1.0 1.0 1.0 0.4 1.0
## d 0.0 1.0 -1.0 1.0 -1.0 -1.0 -0.4 -1.0
## e 0.0 -1.0 1.0 -1.0 1.0 1.0 0.4 1.0
## f 0.0 -1.0 1.0 -1.0 1.0 1.0 0.4 1.0
## g -0.1 -0.4 0.4 -0.4 0.4 0.4 1.0 0.4
## h 0.0 -1.0 1.0 -1.0 1.0 1.0 0.4 1.0
Run Code Online (Sandbox Code Playgroud)
这实际上并没有那么有用 - 它确实只是证实了许多变量是强相关的......
library(optimx)
mvec <- c('Nelder-Mead','BFGS','CG','L-BFGS-B',
'nlm','nlminb','spg','ucminf')
opt1 <- optimx(par=parStart, fn = ssqfun,
Observed = d$MORTALITY, x = d$AGE,
itnmax=5000,
method=mvec,control=list(kkt=TRUE))
## control=list(all.methods=TRUE,kkt=TRUE)) ## Boom!
## fvalues method fns grs itns conv KKT1 KKT2 xtimes
## 2 8.988466e+307 BFGS NA NULL NULL 9999 NA NA 0
## 3 8.988466e+307 CG NA NULL NULL 9999 NA NA 0
## 4 8.988466e+307 L-BFGS-B NA NULL NULL 9999 NA NA 0
## 5 8.988466e+307 nlm NA NA NA 9999 NA NA 0
## 7 0.3400858 spg 1 NA 1 3 NA NA 0.064
## 8 0.3400858 ucminf 1 1 NULL 0 NA NA 0.032
## 1 0.06099295 Nelder-Mead 501 NA NULL 1 NA NA 0.252
## 6 0.009275733 nlminb 200 1204 145 1 NA NA 0.708
Run Code Online (Sandbox Code Playgroud)
这警告了不良的缩放,并且还发现了各种不同的答案:只ucminf声称已经收敛,但nlminb得到了更好的答案 - 并且itnmax参数似乎被忽略了......
opt2 <- nlminb(start=parStart, objective = ssqfun,
Observed = d$MORTALITY, x = d$AGE,
control= list(eval.max=5000,iter.max=5000))
parNLM <- opt2$par
Run Code Online (Sandbox Code Playgroud)
完成,但有一个虚假的收敛警告......
round(cbind(parNLS,parConv,parNLM),5)
## parNLS parConv parNLM
## a 1.00000 0.00059 1.00000
## b 50.46708 0.00438 55.37270
## c 3.56799 0.08284 3.89162
## d 0.00072 0.00071 0.00072
## e 6.05200 9.92786 6.04416
## f 21.82347 22.19731 21.82292
## g 0.00005 0.00005 0.00005
## h 1.10026 1.10003 1.10026
sapply(list(parNLS,parConv,parNLM),
ssqfun,Observed=d$MORTALITY,x=d$AGE)
## [1] 0.006346250 0.049972367 0.006315034
Run Code Online (Sandbox Code Playgroud)
它看起来像nlminb和minpack.lm越来越相似的答案,实际上是做更好比原先规定的参数(由相当多的):
pred2 <- nqxPred(as.list(parNLM),d$AGE)
dPred <- with(d,rbind(dPred,
data.frame(AGE,MORTALITY=pred2,w="nlminb")))
g1 + geom_line(data=dPred,aes(colour=w))
ggsave("cmpplot.png")
Run Code Online (Sandbox Code Playgroud)

ggplot(data=dPred,aes(x=AGE,y=MORTALITY-d$MORTALITY,colour=w))+
geom_line()+geom_point(aes(shape=w),alpha=0.3)
ggsave("residplot.png")
Run Code Online (Sandbox Code Playgroud)

其他可以尝试的事情是:
slice函数from bbmle来探索旧参数和新参数是否代表不同的最小值,或者旧参数是否只是一个错误的收敛...optimx相关包中获取KKT(Karsh-Kuhn-Tucker)标准计算器以进行类似检查PS:最大的偏差(到目前为止)是最老的年龄组,可能也有小样本.从统计学的角度来看,可能值得做一个由各个点的精度加权的拟合...