Avu*_*oru 7 python gradient numpy
我想知道它是如何numpy.gradient
工作的.我用梯度试图计算群速度(波包的群速度是频率相对于波数的导数,而不是一组速度).我向它输入了一个3列阵列,前两个列是x和y坐标,第三列是该点的频率(x,y).我需要计算渐变,我确实期望一个二维矢量,是梯度定义
df/dx*i+df/dy*j+df/dz*k
Run Code Online (Sandbox Code Playgroud)
而我的函数只有x和yi的函数确实期望类似的东西
df/dx*i+df/dy*j
Run Code Online (Sandbox Code Playgroud)
但是我得到了2个阵列,每个阵列有3个列,即2个3d矢量; 起初我认为两者的总和会给我我搜索的向量,但z分量不会消失.我希望我的解释充分清楚.我想知道numpy.gradient
它是如何工作的,如果它是我的问题的正确选择.否则我想知道是否有任何其他python函数我可以使用.
我的意思是:我想计算一组数值的梯度:
data=[[x1,x2,x3]...[x1,x2,x3]]
Run Code Online (Sandbox Code Playgroud)
其中x1,x2是均匀网格上的点坐标(我在布里渊区域上的点),x3是该点的频率值.我还提供输入步骤以推导出2个方向:
stepx=abs(max(unique(data[:,0])-min(unique(data[:,0]))/(len(unique(data[:,0]))-1)
Run Code Online (Sandbox Code Playgroud)
y方向相同.我没有在网格上构建我的数据,我已经有一个网格,这就是为什么这里给出的答案中的实例并没有帮助我.一个更合适的例子应该有一个点和值的网格,就像我拥有的那样:
data=[]
for i in range(10):
for j in range(10):
data.append([i,j,i**2+j**2])
data=array(data,dtype=float)
gx,gy=gradient(data)
Run Code Online (Sandbox Code Playgroud)
我可以添加的另一件事是我的网格不是正方形,而是多边形的形状是二维水晶的布里渊区域.
我已经明白numpy.gradient
只能在正方形的价值网格上正常工作,而不是我正在寻找的东西.即使我将我的数据作为一个网格,在原始数据的多边形之外会有很多零,这会给我的渐变添加非常高的向量,从而影响(负面)计算的精度.这个模块在我看来更像是一个玩具而不是一个工具,它有严重的局限性.
使用词典解决问题.
set*_*eth 26
您需要提供gradient
一个矩阵来描述您的(x,y)
点的角频率值.例如
def f(x,y):
return np.sin((x + y))
x = y = np.arange(-5, 5, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array([f(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
gx,gy = np.gradient(Z,0.05,0.05)
Run Code Online (Sandbox Code Playgroud)
您可以看到将Z绘制为曲面给出:
以下是解释渐变的方法:
gx
是一个矩阵,可以dz/dx
在所有点上进行更改.例如gx [0] [0] dz/dx
at (x0,y0
).可视化gx
有助于理解:
由于我的数据是从f(x,y) = sin(x+y)
gy 生成的,看起来是一样的.
这是一个使用f(x,y) = sin(x)
...... 的更明显的例子
F(X,Y)
和渐变
更新让我们来看看xy对.
这是我使用的代码:
def f(x,y):
return np.sin(x)
x = y = np.arange(-3,3,.05)
X, Y = np.meshgrid(x, y)
zs = np.array([f(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
xy_pairs = np.array([str(x)+','+str(y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
xy_pairs = xy_pairs.reshape(X.shape)
gy,gx = np.gradient(Z,.05,.05)
Run Code Online (Sandbox Code Playgroud)
现在我们可以查看并确切了解发生了什么.假设我们想知道与价值相关的点是什么Z[20][30]
?然后...
>>> Z[20][30]
-0.99749498660405478
Run Code Online (Sandbox Code Playgroud)
重点是
>>> xy_pairs[20][30]
'-1.5,-2.0'
Run Code Online (Sandbox Code Playgroud)
是对的吗?让我们检查.
>>> np.sin(-1.5)
-0.99749498660405445
Run Code Online (Sandbox Code Playgroud)
是.
那时我们的梯度组件是什么?
>>> gy[20][30]
0.0
>>> gx[20][30]
0.070707731517679617
Run Code Online (Sandbox Code Playgroud)
退房吗?
dz/dy always 0
校验.
dz/dx = cos(x)
和...
>>> np.cos(-1.5)
0.070737201667702906
Run Code Online (Sandbox Code Playgroud)
看起来不错.
你会发现它们是不完全正确的,那是因为我的小Z的数据是不连续的,还有的步长0.05
和gradient
只能近似的变化率.
归档时间: |
|
查看次数: |
25090 次 |
最近记录: |