为什么numpy给出了这个结果:
x = numpy.array([1.48,1.41,0.0,0.1])
print x.argsort()
>[2 3 1 0]
Run Code Online (Sandbox Code Playgroud)
当我希望它能做到这一点时:
[3 2 0 1]
显然我对这个功能的理解是缺乏的.
unu*_*tbu 35
[2, 3, 1, 0] 表示最小元素在索引2处,下一个在索引3处最小,然后索引1,然后索引0.
有很多方法可以获得您想要的结果:
import numpy as np
import scipy.stats as stats
def using_indexed_assignment(x):
"https://stackoverflow.com/a/5284703/190597 (Sven Marnach)"
result = np.empty(len(x), dtype=int)
temp = x.argsort()
result[temp] = np.arange(len(x))
return result
def using_rankdata(x):
return stats.rankdata(x)-1
def using_argsort_twice(x):
"https://stackoverflow.com/a/6266510/190597 (k.rooijers)"
return np.argsort(np.argsort(x))
def using_digitize(x):
unique_vals, index = np.unique(x, return_inverse=True)
return np.digitize(x, bins=unique_vals) - 1
Run Code Online (Sandbox Code Playgroud)
例如,
In [72]: x = np.array([1.48,1.41,0.0,0.1])
In [73]: using_indexed_assignment(x)
Out[73]: array([3, 2, 0, 1])
Run Code Online (Sandbox Code Playgroud)
这会检查它们是否都产生相同的结果:
x = np.random.random(10**5)
expected = using_indexed_assignment(x)
for func in (using_argsort_twice, using_digitize, using_rankdata):
assert np.allclose(expected, func(x))
Run Code Online (Sandbox Code Playgroud)
这些IPython %timeit基准测试表明大型阵列using_indexed_assignment是最快的:
In [50]: x = np.random.random(10**5)
In [66]: %timeit using_indexed_assignment(x)
100 loops, best of 3: 9.32 ms per loop
In [70]: %timeit using_rankdata(x)
100 loops, best of 3: 10.6 ms per loop
In [56]: %timeit using_argsort_twice(x)
100 loops, best of 3: 16.2 ms per loop
In [59]: %timeit using_digitize(x)
10 loops, best of 3: 27 ms per loop
Run Code Online (Sandbox Code Playgroud)
对于小型阵列,using_argsort_twice可能更快:
In [78]: x = np.random.random(10**2)
In [81]: %timeit using_argsort_twice(x)
100000 loops, best of 3: 3.45 µs per loop
In [79]: %timeit using_indexed_assignment(x)
100000 loops, best of 3: 4.78 µs per loop
In [80]: %timeit using_rankdata(x)
100000 loops, best of 3: 19 µs per loop
In [82]: %timeit using_digitize(x)
10000 loops, best of 3: 26.2 µs per loop
Run Code Online (Sandbox Code Playgroud)
另请注意,这stats.rankdata使您可以更好地控制如何处理相等值的元素.
| 归档时间: |
|
| 查看次数: |
63078 次 |
| 最近记录: |