我有一些数据,Y变量是一个因素 - 好或坏.我正在使用'caret'包中的'train'方法构建一个支持向量机.使用'train'功能,我能够最终确定各种调整参数的值,并获得最终的支持向量机.对于测试数据,我可以预测"类".但是当我试图预测测试数据的概率时,我得到的误差低于(例如我的模型告诉我测试数据中的第一个数据点y ='good',但我想知道获得'好'的概率是多少...通常在支持向量机的情况下,模型将计算预测的概率.如果Y变量有2个结果,则模型将预测每个结果的概率.具有最大概率的结果被认为是最终解决方案)
**Warning message:
In probFunction(method, modelFit, ppUnk) :
kernlab class probability calculations failed; returning NAs**
Run Code Online (Sandbox Code Playgroud)
示例代码如下
library(caret)
trainset <- data.frame(
class=factor(c("Good", "Bad", "Good", "Good", "Bad", "Good", "Good", "Good", "Good", "Bad", "Bad", "Bad")),
age=c(67, 22, 49, 45, 53, 35, 53, 35, 61, 28, 25, 24))
testset <- data.frame(
class=factor(c("Good", "Bad", "Good" )),
age=c(64, 23, 50))
library(kernlab)
set.seed(231)
### finding optimal value of a tuning parameter
sigDist <- sigest(class ~ ., data = trainset, frac = 1)
### creating a grid of two tuning parameters, .sigma comes from the earlier line. we are trying to find best value of .C
svmTuneGrid <- data.frame(.sigma = sigDist[1], .C = 2^(-2:7))
set.seed(1056)
svmFit <- train(class ~ .,
data = trainset,
method = "svmRadial",
preProc = c("center", "scale"),
tuneGrid = svmTuneGrid,
trControl = trainControl(method = "repeatedcv", repeats = 5))
### svmFit finds the optimal values of tuning parameters and builds the model using the best parameters
### to predict class of test data
predictedClasses <- predict(svmFit, testset )
str(predictedClasses)
### predict probablities but i get an error
predictedProbs <- predict(svmFit, newdata = testset , type = "prob")
head(predictedProbs)
Run Code Online (Sandbox Code Playgroud)
这一行下面的新问题:按照以下输出,有9个支持向量.如何识别12个训练数据点是哪9个?
svmFit$finalModel
Run Code Online (Sandbox Code Playgroud)
支持类"ksvm"的向量机对象
SV类型:C-svc(分类)参数:成本C = 1
高斯径向基核函数.超参数:sigma = 0.72640759446315
支持向量数量:9
目标函数值:-5.6994训练错误:0.083333
Jim*_* M. 11
在列车控制语句中,您必须指定是否要classProbs = TRUE返回类概率.
svmFit <- train(class ~ .,
data = trainset,
method = "svmRadial",
preProc = c("center", "scale"),
tuneGrid = svmTuneGrid,
trControl = trainControl(method = "repeatedcv", repeats = 5,
classProbs = TRUE))
predictedClasses <- predict(svmFit, testset )
predictedProbs <- predict(svmFit, newdata = testset , type = "prob")
Run Code Online (Sandbox Code Playgroud)
给出测试数据集中Bad或Good类的概率:
print(predictedProbs)
Bad Good
1 0.2302979 0.7697021
2 0.7135050 0.2864950
3 0.2230889 0.7769111
Run Code Online (Sandbox Code Playgroud)
要回答新问题,可以alphaindex(svmFit$finalModel)使用系数访问原始数据集中支持向量的位置coef(svmFit$finalModel).