python:正则表达式匹配字符串的数字范围

TC *_*Fox 8 python regex

这可能是一个已经解决的问题,但我无法弄清楚.我有两个相当大的整数,让我们给他们打电话start_numberend_number(他们所代表的电话号码的连续块).其他数字(表示为字符串)将被输入到我的系统,我需要使用正则表达式来匹配这个对"正则表达式的范围内",看是否串号落在开或之间start_numberend_number.

例如:

  • start_number = 99519000
  • end_number = 99519099

因此

  • expression = "^995190[0-9][0-9]$"

这样我最终可以匹配以下示例数字(一次一个地到达我的系统,并且可以随时到达):

  • "99519000" < - MATCH
  • "99519055" < - MATCH
  • "99519099" < - MATCH
  • "99519100" < - 不匹配
  • "99512210" < - 不匹配
  • "41234123" < - 不匹配

我如何使用python 创建正则表达式字符串模式" expression"给出任何合理的start_numberend_number?我有几个开始/结束编号'块'我必须创建正则表达式模式,我只需要一种方法来编程这些模式.

可以假设:

  • Start_number 永远不会少于 end_number
  • 永远是一个正整数.
  • 在我的情况下,start_number并且end_number将永远是相同的'长度'(即,当表示为字符串时,总是将具有相同数量的基本10'字符',如果它将使生活更容易.

编辑:为清楚起见

and*_*oke 17

[假设您需要这个,因为它是一些需要正则表达式的奇怪的第三方系统]

新的方法

我对弗雷德里克的评论越多,我就越同意.即使输入字符串很长,regexp引擎也应该能够将其编译为紧凑的DFA.对于许多情况,以下是一个明智的解决方案:

import re

def regexp(lo, hi):
    fmt = '%%0%dd' % len(str(hi))
    return re.compile('(%s)' % '|'.join(fmt % i for i in range(lo, hi+1)))
Run Code Online (Sandbox Code Playgroud)

(它适用于下面测试中的所有数值范围,包括99519000 - 99519099.粗略的包络计算表明9位数字约为1GB内存的限制.如果大多数数字是匹配;如果只有少数匹配,你可以变得更大.)

老方法

[再次更新以获得更短的结果 - 除了偶尔合并\d\d它与手工生成的一样好]

假设所有数字都是相同的长度(如果需要,你在左边填零),这适用:

import re

def alt(*args):
    '''format regexp alternatives'''
    if len(args) == 1: return args[0]
    else: return '(%s)' % '|'.join(args)

def replace(s, c): 
     '''replace all characters in a string with a different character'''
    return ''.join(map(lambda x: c, s))

def repeat(s, n):
    '''format a regexp repeat'''
    if n == 0: return ''
    elif n == 1: return s
    else: return '%s{%d}' % (s, n)

def digits(lo, hi): 
    '''format a regexp digit range'''
    if lo == 0 and hi == 9: return r'\d'
    elif lo == hi: return str(lo)
    else: return '[%d-%d]' % (lo, hi)

def trace(f):
    '''for debugging'''
    def wrapped(lo, hi):
        result = f(lo, hi)
        print(lo, hi, result)
        return result
    return wrapped

#@trace  # uncomment to get calls traced to stdout (explains recursion when bug hunting)
def regexp(lo, hi):
    '''generate a regexp that matches integers from lo to hi only.
       assumes that inputs are zero-padded to the length of hi (like phone numbers).
       you probably want to surround with ^ and $ before using.'''

    assert lo <= hi
    assert lo >= 0

    slo, shi = str(lo), str(hi)
    # zero-pad to same length
    while len(slo) < len(shi): slo = '0' + slo
    # first digits and length
    l, h, n = int(slo[0]), int(shi[0]), len(slo)

    if l == h:
        # extract common prefix
        common = ''
        while slo and slo[0] == shi[0]:
            common += slo[0]
            slo, shi = slo[1:], shi[1:]
        if slo: return common + regexp(int(slo), int(shi))
        else: return common

    else:
        # the core of the routine.
        # split into 'complete blocks' like 200-599 and 'edge cases' like 123-199
        # and handle each separately.

        # are these complete blocks?
        xlo = slo[1:] == replace(slo[1:], '0')
        xhi = shi[1:] == replace(shi[1:], '9')

        # edges of possible complete blocks
        mlo = int(slo[0] + replace(slo[1:], '9'))
        mhi = int(shi[0] + replace(shi[1:], '0'))

        if xlo:
            if xhi:
                # complete block on both sides
                # this is where single digits are finally handled, too.
                return digits(l, h) + repeat('\d', n-1)
            else:
                # complete block to mhi, plus extra on hi side
                prefix = '' if l or h-1 else '0'
                return alt(prefix + regexp(lo, mhi-1), regexp(mhi, hi))
        else:
            prefix = '' if l else '0'
            if xhi:
                # complete block on hi side plus extra on lo
                return alt(prefix + regexp(lo, mlo), regexp(mlo+1, hi))
            else:
                # neither side complete, so add extra on both sides
                # (and maybe a complete block in the middle, if room)
                if mlo + 1 == mhi:
                    return alt(prefix + regexp(lo, mlo), regexp(mhi, hi))
                else:
                    return alt(prefix + regexp(lo, mlo), regexp(mlo+1, mhi-1), regexp(mhi, hi))


# test a bunch of different ranges
for (lo, hi) in [(0, 0), (0, 1), (0, 2), (0, 9), (0, 10), (0, 11), (0, 101),
                 (1, 1), (1, 2), (1, 9), (1, 10), (1, 11), (1, 101),
                 (0, 123), (111, 123), (123, 222), (123, 333), (123, 444),
                 (0, 321), (111, 321), (222, 321), (321, 333), (321, 444),
                 (123, 321), (111, 121), (121, 222), (1234, 4321), (0, 999),
                 (99519000, 99519099)]:
    fmt = '%%0%dd' % len(str(hi))
    rx = regexp(lo, hi)
    print('%4s - %-4s  %s' % (fmt % lo, fmt % hi, rx))
    m = re.compile('^%s$' % rx)
    for i in range(0, 1+int(replace(str(hi), '9'))):
        if m.match(fmt % i):
            assert lo <= i <= hi, i
        else:
            assert i < lo or i > hi, i
Run Code Online (Sandbox Code Playgroud)

该函数regexp(lo, hi)构建一个正则表达式,匹配lo和之间的值hi(零填充到最大长度).你可能需要放一个^前后一个$(如在测试代码中)来强制匹配为整个字符串.

算法实际上非常简单 - 它递归地将事物划分为公共前缀和"完整块".一个完整的块就像200-599,可以可靠地匹配(在这种情况下[2-5]\d{2}).

所以123-599分为123-199和200-599.后半部分是一个完整的块,前半部分的公共前缀为1和23-99,递归处理为23-29(公共前缀)和30-99(完整块)(我们最终终止,因为参数每个调用都比初始输入短).

唯一令人讨厌的细节是prefix,这是必需的因为参数regexp()是整数,所以当调用生成例如00-09的正则表达式时,它实际上生成0到9的正则表达式,而没有前导0.

输出是一堆测试用例,显示范围和正则表达式:

   0 - 0     0
   0 - 1     [0-1]
   0 - 2     [0-2]
   0 - 9     \d
  00 - 10    (0\d|10)
  00 - 11    (0\d|1[0-1])
 000 - 101   (0\d\d|10[0-1])
   1 - 1     1
   1 - 2     [1-2]
   1 - 9     [1-9]
  01 - 10    (0[1-9]|10)
  01 - 11    (0[1-9]|1[0-1])
 001 - 101   (0(0[1-9]|[1-9]\d)|10[0-1])
 000 - 123   (0\d\d|1([0-1]\d|2[0-3]))
 111 - 123   1(1[1-9]|2[0-3])
 123 - 222   (1(2[3-9]|[3-9]\d)|2([0-1]\d|2[0-2]))
 123 - 333   (1(2[3-9]|[3-9]\d)|2\d\d|3([0-2]\d|3[0-3]))
 123 - 444   (1(2[3-9]|[3-9]\d)|[2-3]\d{2}|4([0-3]\d|4[0-4]))
 000 - 321   ([0-2]\d{2}|3([0-1]\d|2[0-1]))
 111 - 321   (1(1[1-9]|[2-9]\d)|2\d\d|3([0-1]\d|2[0-1]))
 222 - 321   (2(2[2-9]|[3-9]\d)|3([0-1]\d|2[0-1]))
 321 - 333   3(2[1-9]|3[0-3])
 321 - 444   (3(2[1-9]|[3-9]\d)|4([0-3]\d|4[0-4]))
 123 - 321   (1(2[3-9]|[3-9]\d)|2\d\d|3([0-1]\d|2[0-1]))
 111 - 121   1(1[1-9]|2[0-1])
 121 - 222   (1(2[1-9]|[3-9]\d)|2([0-1]\d|2[0-2]))
1234 - 4321  (1(2(3[4-9]|[4-9]\d)|[3-9]\d{2})|[2-3]\d{3}|4([0-2]\d{2}|3([0-1]\d|2[0-1])))
 000 - 999   \d\d{2}
99519000 - 99519099  995190\d\d
Run Code Online (Sandbox Code Playgroud)

当最后一次测试循环超过99999999时,它需要一段时间才能运行.

表达式应该足够紧凑以避免任何缓冲区限制(我猜测最坏情况下的内存大小与最大数字中的位数的平方成正比).

ps我正在使用python 3,但我不认为这在这里有很大的不同.

  • 这是一个令人印象深刻的回应!真的很感谢为此所做的工作,说真的! (2认同)