Ian*_*rts 10 python curve-fitting scipy least-squares
我正在使用Scipy CurveFit将高斯曲线拟合到数据中,并且有兴趣分析拟合的质量.我知道CurveFit返回一个有用的pcov矩阵,从中可以将参数popt [0]的每个拟合参数的标准偏差计算为sqrt(pcov [0,0]).
例如代码片段:
import numpy as np
from scipy.optimize import curve_fit
def gaussian(self, x, *p):
A, sigma, mu, y_offset = p
return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + y_offset
p0 = [1,2,3,4] #Initial guess of parameters
popt, pcov = curve_fit(gaussian, x,y, p0) #Return co-effs for fit and covariance
‘Parameter A is %f (%f uncertainty)’ % (popt[0], np.sqrt(pcov[0, 0]))
Run Code Online (Sandbox Code Playgroud)
这给出了拟合曲线方程中每个系数拟合参数的不确定性的指示,但我想知道如何最好地获得整体"拟合参数质量",以便我可以比较不同曲线方程之间的拟合质量(例如高斯,超高斯等)
在一个简单的层面上,我可以计算每个系数的不确定性百分比,然后平均,虽然我想知道是否有更好的方法?从在线搜索,以及特别有用的"适合度"维基百科页面,我注意到有很多措施来描述这一点.我想知道是否有人知道是否有任何内置到Python包/有任何一般建议的好方法来量化曲线拟合.
谢谢你的帮助!
归档时间: |
|
查看次数: |
3888 次 |
最近记录: |