Ale*_*tto 5 python arrays numpy matrix
我对numpy.dot产品有些怀疑.
我定义了一个矩阵6x6,如:
C=np.zeros((6,6))
C[0,0], C[1,1], C[2,2] = 129.5, 129.5, 129.5
C[3,3], C[4,4], C[5,5] = 25, 25, 25
C[0,1], C[0,2] = 82, 82
C[1,0], C[1,2] = 82, 82
C[2,0], C[2,1] = 82, 82
Run Code Online (Sandbox Code Playgroud)
然后我通过使用多维数组以4级张量重新制作它
def long2short(m, n):
"""
Given two indices m and n of the stiffness tensor the function
return i the index of the Voigt matrix
i = long2short(m,n)
"""
if m == n:
i = m
elif (m == 1 and n == 2) or (m == 2 and n == 1):
i = 3
elif (m == 0 and n == 2) or (m == 2 and n == 0):
i = 4
elif (m == 0 and n == 1) or (m == 1 and n == 0):
i = 5
return i
c=np.zeros((3,3,3,3))
for m in range(3):
for n in range(3):
for o in range(3):
for p in range(3):
i = long2short(m, n)
j = long2short(o, p)
c[m, n, o, p] = C[i, j]
Run Code Online (Sandbox Code Playgroud)
然后我想通过使用我定义的旋转矩阵来改变张量的坐标参考系统:
Q=np.array([[sqrt(2.0/3), 0, 1.0/sqrt(3)], [-1.0/sqrt(6), 1.0/sqrt(2), 1.0/sqrt(3)], [-1.0/sqrt(6), -1.0/sqrt(2), 1.0/sqrt(3)]])
Qt = Q.transpose()
Run Code Online (Sandbox Code Playgroud)
矩阵是正交的(虽然数值精度不完美):
In [157]: np.dot(Q, Qt)
Out[157]:
array([[ 1.00000000e+00, 4.28259858e-17, 4.28259858e-17],
[ 4.28259858e-17, 1.00000000e+00, 2.24240114e-16],
[ 4.28259858e-17, 2.24240114e-16, 1.00000000e+00]])
Run Code Online (Sandbox Code Playgroud)
但是为什么我这样做呢:
In [158]: a=np.dot(Q,Qt)
In [159]: c_mat=np.dot(a, c)
In [160]: a1 = np.dot(Qt, c)
In [161]: c_mat1=np.dot(Q, a1)
Run Code Online (Sandbox Code Playgroud)
我得到c_mat(= c)的期望值,但c_mat1没有?在多维数组上使用点有一些不足之处吗?
Sau*_*tro 12
问题是,np.dot(a,b)对于多维数组,最后一个维度的点积与倒数a第二个维度b:
np.dot(a,b) == np.tensordot(a, b, axes=([-1],[2]))
Run Code Online (Sandbox Code Playgroud)
如您所见,它不能用作多维数组的矩阵乘法.使用np.tensordot()允许您控制axes要从中执行点积的每个输入.例如,要获得相同的结果,c_mat1您可以执行以下操作:
c_mat1 = np.tensordot(Q, a1, axes=([-1],[0]))
Run Code Online (Sandbox Code Playgroud)
这就是强制类似矩阵乘法的行为.
| 归档时间: |
|
| 查看次数: |
9019 次 |
| 最近记录: |