10 opencv image-processing computer-vision
我试图从视频中检测到车辆,我将在实时应用程序中进行,但暂时并且为了理解我正在视频上进行操作,代码如下:
void surf_detection(Mat img_1,Mat img_2); /** @function main */
int main( int argc, char** argv )
{
int i;
int key;
CvCapture* capture = cvCaptureFromAVI("try2.avi");// Read the video file
if (!capture){
std::cout <<" Error in capture video file";
return -1;
}
Mat img_template = imread("images.jpg"); // read template image
int numFrames = (int) cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_COUNT);
IplImage* img = 0;
for(i=0;i<numFrames;i++){
cvGrabFrame(capture); // capture a frame
img=cvRetrieveFrame(capture); // retrieve the captured frame
surf_detection (img_template,img);
cvShowImage("mainWin", img);
key=cvWaitKey(20);
}
return 0;
}
void surf_detection(Mat img_1,Mat img_2)
{
if( !img_1.data || !img_2.data )
{
std::cout<< " --(!) Error reading images " << std::endl;
}
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
std::vector< DMatch > good_matches;
do{
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Draw keypoints
Mat img_keypoints_1; Mat img_keypoints_2;
drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
double max_dist = 0;
double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if( dist < min_dist )
min_dist = dist;
if( dist > max_dist )
max_dist = dist;
}
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
for( int i = 0; i < descriptors_1.rows; i++ )
{
if( matches[i].distance < 2*min_dist )
{
good_matches.push_back( matches[i]);
}
}
}while(good_matches.size()<100);
//-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] = Point2f(0,0);
obj_corners[1] = Point2f( img_1.cols, 0 );
obj_corners[2] = Point2f( img_1.cols, img_1.rows );
obj_corners[3] = Point2f( 0, img_1.rows );
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] , scene_corners[1] , Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] , scene_corners[3], Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] , scene_corners[0], Scalar( 0, 255, 0), 4 );
imshow( "Good Matches & Object detection", img_matches );
}
Run Code Online (Sandbox Code Playgroud)
我得到以下输出
和std :: cout << scene_corners [i](结果)
H的价值:
但我的问题是为什么它没有在被检测到的对象上绘制矩形,如:
我在简单的视频和图像上这样做,但是当我在静态相机上这样做时,没有那个矩形可能很难
首先,在您显示的图像中,根本不绘制任何矩形.你可以在图像中间绘制一个矩形吗?
然后,查看以下代码:
int x1 , x2 , y1 , y2 ;
x1 = scene_corners[0].x + Point2f( img_1.cols, 0).x ;
y1 = scene_corners[0].y + Point2f( img_1.cols, 0).y ;
x2 = scene_corners[0].x + Point2f( img_1.cols, 0).x + in_box.width ;
y2 = scene_corners[0].y + Point2f( img_1.cols, 0).y + in_box.height ;
Run Code Online (Sandbox Code Playgroud)
我不明白为什么你添加in_box.width
和in_box.height
每个角落(他们在哪里定义的?).你应该使用scene_corners[2]
.但评论的行应该在某处打印一个矩形.
由于您要求了解更多详细信息,请查看代码中发生的情况.
perspectiveTransform()
?detector.detect
.它为您提供了两个图像的兴趣点.extractor.compute
.它为您提供了一种比较兴趣点的方法.比较两个特征的描述符回答了这个问题:这些点有多相似?*good_matches
.因为对于一个特征而言,其他图像中最相似的特征实际上完全不同(因为你没有更好的选择,它仍然是最相似的).这是删除错误匹配的第一个过滤器.现在变得有趣了.您有一个单应矩阵,允许您将第一个图像的任何点投影到第二个图像中的对应关系.因此,您可以决定在对象周围绘制一个矩形(即obj_corners
),并将其投影到第二个图像(perspectiveTransform( obj_corners, scene_corners, H);
)上.结果是scene_corners
.
现在你想使用绘制一个矩形scene_corners
.但还有一点:drawMatches()
显然将你的两个图像放在一起img_matches
.但投影(单应矩阵)是分别在图像上计算的!这意味着scene_corner
必须相应地翻译每个.由于场景图像是在对象图像的右侧绘制的,因此您必须将对象图像的宽度添加到每个图像scene_corner
,以便将它们平移到右侧.
这就是为什么你添加0
到y1
和y2
因为你没有给他们垂直平移.但是,对于x1
和x2
,你必须补充img_1.cols
.
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] + Point2f( img_1.cols, 0), scene_corners[1] + Point2f( img_1.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( img_1.cols, 0), scene_corners[2] + Point2f( img_1.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( img_1.cols, 0), scene_corners[3] + Point2f( img_1.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( img_1.cols, 0), scene_corners[0] + Point2f( img_1.cols, 0), Scalar( 0, 255, 0), 4 );
Run Code Online (Sandbox Code Playgroud)
所以我建议您取消注释这些线条并查看是否绘制了一个矩形.如果没有,尝试硬编码值(例如Point2f(0, 0)
和Point2f(100, 100)
),直到成功绘制矩形.也许你的问题来自于使用cvPoint
和Point2f
共同使用.也试着用Scalar(0, 255, 0, 255)
......
希望能帮助到你.
*必须明白,两点可能看起来完全相同但不符合现实中的相同点.想想一个真正重复的模式,比如建筑物上的窗户角落.所有窗口看起来都一样,所以两个不同窗口的角落可能看起来非常相似,即使这显然是错误的匹配.