Mey*_*sam 10 c# algorithm parsing
我有以下BoolExpr课程:
class BoolExpr
{
public enum BOP { LEAF, AND, OR, NOT };
//
// inner state
//
private BOP _op;
private BoolExpr _left;
private BoolExpr _right;
private String _lit;
//
// private constructor
//
private BoolExpr(BOP op, BoolExpr left, BoolExpr right)
{
_op = op;
_left = left;
_right = right;
_lit = null;
}
private BoolExpr(String literal)
{
_op = BOP.LEAF;
_left = null;
_right = null;
_lit = literal;
}
//
// accessor
//
public BOP Op
{
get { return _op; }
set { _op = value; }
}
public BoolExpr Left
{
get { return _left; }
set { _left = value; }
}
public BoolExpr Right
{
get { return _right; }
set { _right = value; }
}
public String Lit
{
get { return _lit; }
set { _lit = value; }
}
//
// public factory
//
public static BoolExpr CreateAnd(BoolExpr left, BoolExpr right)
{
return new BoolExpr(BOP.AND, left, right);
}
public static BoolExpr CreateNot(BoolExpr child)
{
return new BoolExpr(BOP.NOT, child, null);
}
public static BoolExpr CreateOr(BoolExpr left, BoolExpr right)
{
return new BoolExpr(BOP.OR, left, right);
}
public static BoolExpr CreateBoolVar(String str)
{
return new BoolExpr(str);
}
public BoolExpr(BoolExpr other)
{
// No share any object on purpose
_op = other._op;
_left = other._left == null ? null : new BoolExpr(other._left);
_right = other._right == null ? null : new BoolExpr(other._right);
_lit = new StringBuilder(other._lit).ToString();
}
//
// state checker
//
Boolean IsLeaf()
{
return (_op == BOP.LEAF);
}
Boolean IsAtomic()
{
return (IsLeaf() || (_op == BOP.NOT && _left.IsLeaf()));
}
}
Run Code Online (Sandbox Code Playgroud)
我应该使用什么算法来解析像" ?((A ? B) ? C ? D)" 这样的输入布尔表达式字符串并将其加载到上面的类中?
Ant*_*ois 42
TL; DR:如果要查看代码,请跳至答案的第二部分.
我将从表达式构建一个树来解析,然后首先遍历它.您可以参考维基百科关于二元表达式树的文章来了解我的建议.
not,and,or),创建相应的运营商节点因此,对于您的示例?((A ? B) ? C ? D),算法将如下所示:
?((A ? B) ? C ? D) 变 ?(((A ? B) ? C) ? D)
NOT节点,它将获得以下开放式paren作为孩子的结果.A LEAF节点,AND节点和B LEAF节点. AND有A和B作为孩子.OR节点,它具有以前创建AND的子LEAF节点和新节点C.OR节点,它具有先前创建OR的节点和D作为子节点的新节点.那时,你的树看起来像这样:
NOT
|
OR
/\
OR D
/ \
AND C
/\
A B
Run Code Online (Sandbox Code Playgroud)
然后,您可以添加一个Node.Evaluate()方法,该方法根据其类型递归计算(此处可以使用多态).例如,它看起来像这样:
class LeafEx {
bool Evaluate() {
return Boolean.Parse(this.Lit);
}
}
class NotEx {
bool Evaluate() {
return !Left.Evaluate();
}
}
class OrEx {
bool Evaluate() {
return Left.Evaluate() || Right.Evaluate();
}
}
Run Code Online (Sandbox Code Playgroud)
等等等等.要获得表达式的结果,您只需要调用
bool result = Root.Evaluate();
Run Code Online (Sandbox Code Playgroud)
好吧,因为它不是一项任务,实际上它实际上是一件有趣的事情,所以我继续前进.我将在这里发布的一些代码与我之前描述的内容无关(并且缺少某些部分)但是我将把我的答案中的顶部留下来作为参考(没有任何错误(希望!)).
请记住,这远非最佳,我努力不修改您提供的BoolExpr类.修改它可以让您减少代码量.根本没有错误检查.
这是主要方法
static void Main(string[] args)
{
//We'll use ! for not, & for and, | for or and remove whitespace
string expr = @"!((A&B)|C|D)";
List<Token> tokens = new List<Token>();
StringReader reader = new StringReader(expr);
//Tokenize the expression
Token t = null;
do
{
t = new Token(reader);
tokens.Add(t);
} while (t.type != Token.TokenType.EXPR_END);
//Use a minimal version of the Shunting Yard algorithm to transform the token list to polish notation
List<Token> polishNotation = TransformToPolishNotation(tokens);
var enumerator = polishNotation.GetEnumerator();
enumerator.MoveNext();
BoolExpr root = Make(ref enumerator);
//Request boolean values for all literal operands
foreach (Token tok in polishNotation.Where(token => token.type == Token.TokenType.LITERAL))
{
Console.Write("Enter boolean value for {0}: ", tok.value);
string line = Console.ReadLine();
booleanValues[tok.value] = Boolean.Parse(line);
Console.WriteLine();
}
//Eval the expression tree
Console.WriteLine("Eval: {0}", Eval(root));
Console.ReadLine();
}
Run Code Online (Sandbox Code Playgroud)
标记化阶段为表达式的所有标记创建Token对象.它有助于将解析与实际算法分开.这是执行此操作的Token类:
class Token
{
static Dictionary<char, KeyValuePair<TokenType, string>> dict = new Dictionary<char, KeyValuePair<TokenType, string>>()
{
{
'(', new KeyValuePair<TokenType, string>(TokenType.OPEN_PAREN, "(")
},
{
')', new KeyValuePair<TokenType, string>(TokenType.CLOSE_PAREN, ")")
},
{
'!', new KeyValuePair<TokenType, string>(TokenType.UNARY_OP, "NOT")
},
{
'&', new KeyValuePair<TokenType, string>(TokenType.BINARY_OP, "AND")
},
{
'|', new KeyValuePair<TokenType, string>(TokenType.BINARY_OP, "OR")
}
};
public enum TokenType
{
OPEN_PAREN,
CLOSE_PAREN,
UNARY_OP,
BINARY_OP,
LITERAL,
EXPR_END
}
public TokenType type;
public string value;
public Token(StringReader s)
{
int c = s.Read();
if (c == -1)
{
type = TokenType.EXPR_END;
value = "";
return;
}
char ch = (char)c;
if (dict.ContainsKey(ch))
{
type = dict[ch].Key;
value = dict[ch].Value;
}
else
{
string str = "";
str += ch;
while (s.Peek() != -1 && !dict.ContainsKey((char)s.Peek()))
{
str += (char)s.Read();
}
type = TokenType.LITERAL;
value = str;
}
}
}
Run Code Online (Sandbox Code Playgroud)
此时,在main方法中,您可以看到我以波兰表示法顺序转换标记列表.它使树的创建更容易,我使用Shunting Yard算法的修改实现:
static List<Token> TransformToPolishNotation(List<Token> infixTokenList)
{
Queue<Token> outputQueue = new Queue<Token>();
Stack<Token> stack = new Stack<Token>();
int index = 0;
while (infixTokenList.Count > index)
{
Token t = infixTokenList[index];
switch (t.type)
{
case Token.TokenType.LITERAL:
outputQueue.Enqueue(t);
break;
case Token.TokenType.BINARY_OP:
case Token.TokenType.UNARY_OP:
case Token.TokenType.OPEN_PAREN:
stack.Push(t);
break;
case Token.TokenType.CLOSE_PAREN:
while (stack.Peek().type != Token.TokenType.OPEN_PAREN)
{
outputQueue.Enqueue(stack.Pop());
}
stack.Pop();
if (stack.Count > 0 && stack.Peek().type == Token.TokenType.UNARY_OP)
{
outputQueue.Enqueue(stack.Pop());
}
break;
default:
break;
}
++index;
}
while (stack.Count > 0)
{
outputQueue.Enqueue(stack.Pop());
}
return outputQueue.Reverse().ToList();
}
Run Code Online (Sandbox Code Playgroud)
在此转换之后,我们的令牌列表变为NOT, OR, OR, C, D, AND, A, B.
此时,我们已准备好创建表达式树.波兰表示法的属性允许我们只需遍历令牌列表并递归创建树节点(我们将使用您的BoolExpr类):
static BoolExpr Make(ref List<Token>.Enumerator polishNotationTokensEnumerator)
{
if (polishNotationTokensEnumerator.Current.type == Token.TokenType.LITERAL)
{
BoolExpr lit = BoolExpr.CreateBoolVar(polishNotationTokensEnumerator.Current.value);
polishNotationTokensEnumerator.MoveNext();
return lit;
}
else
{
if (polishNotationTokensEnumerator.Current.value == "NOT")
{
polishNotationTokensEnumerator.MoveNext();
BoolExpr operand = Make(ref polishNotationTokensEnumerator);
return BoolExpr.CreateNot(operand);
}
else if (polishNotationTokensEnumerator.Current.value == "AND")
{
polishNotationTokensEnumerator.MoveNext();
BoolExpr left = Make(ref polishNotationTokensEnumerator);
BoolExpr right = Make(ref polishNotationTokensEnumerator);
return BoolExpr.CreateAnd(left, right);
}
else if (polishNotationTokensEnumerator.Current.value == "OR")
{
polishNotationTokensEnumerator.MoveNext();
BoolExpr left = Make(ref polishNotationTokensEnumerator);
BoolExpr right = Make(ref polishNotationTokensEnumerator);
return BoolExpr.CreateOr(left, right);
}
}
return null;
}
Run Code Online (Sandbox Code Playgroud)
现在我们是金色的!我们有表达式表达式,因此我们将向用户询问每个文字操作数的实际布尔值,并评估根节点(根据需要递归计算树的其余部分).
我的Eval函数如下,请记住,如果我修改了BoolExpr类,我会使用一些多态来使这个更干净.
static bool Eval(BoolExpr expr)
{
if (expr.IsLeaf())
{
return booleanValues[expr.Lit];
}
if (expr.Op == BoolExpr.BOP.NOT)
{
return !Eval(expr.Left);
}
if (expr.Op == BoolExpr.BOP.OR)
{
return Eval(expr.Left) || Eval(expr.Right);
}
if (expr.Op == BoolExpr.BOP.AND)
{
return Eval(expr.Left) && Eval(expr.Right);
}
throw new ArgumentException();
}
Run Code Online (Sandbox Code Playgroud)
正如预期的那样,进给我们的测试表达?((A ? B) ? C ? D)与值false, true, false, true对A, B, C, D分别产生的结果false.
| 归档时间: |
|
| 查看次数: |
14664 次 |
| 最近记录: |