Sau*_*tro 5 python arrays numpy matrix
在这个问题阐述了如何访问lower和upper给定矩阵的triagular部分,说:
m = np.matrix([[11, 12, 13],
[21, 22, 23],
[31, 32, 33]])
Run Code Online (Sandbox Code Playgroud)
在这里,我需要在一维数组中转换矩阵,可以这样做:
indices = np.triu_indices_from(m)
a = np.asarray( m[indices] )[-1]
#array([11, 12, 13, 22, 23, 33])
Run Code Online (Sandbox Code Playgroud)
在进行大量计算后a,更改其值,它将用于填充对称的2D数组:
new = np.zeros(m.shape)
for i,j in enumerate(zip(*indices)):
new[j]=a[i]
new[j[1],j[0]]=a[i]
Run Code Online (Sandbox Code Playgroud)
返回:
array([[ 11., 12., 13.],
[ 12., 22., 23.],
[ 13., 23., 33.]])
Run Code Online (Sandbox Code Playgroud)
有没有更好的方法来实现这一目标?更具体地说,避免Python循环重建2D数组?
将向量放回二维对称数组的最快和最聪明的方法是这样做:
情况 1:无偏移 (k=0) 即上三角形部分包括对角线
import numpy as np
X = np.array([[1,2,3],[4,5,6],[7,8,9]])
#array([[1, 2, 3],
# [4, 5, 6],
# [7, 8, 9]])
#get the upper triangular part of this matrix
v = X[np.triu_indices(X.shape[0], k = 0)]
print(v)
# [1 2 3 5 6 9]
# put it back into a 2D symmetric array
size_X = 3
X = np.zeros((size_X,size_X))
X[np.triu_indices(X.shape[0], k = 0)] = v
X = X + X.T - np.diag(np.diag(X))
#array([[1., 2., 3.],
# [2., 5., 6.],
# [3., 6., 9.]])
Run Code Online (Sandbox Code Playgroud)
即使numpy.array您使用numpy.matrix.
情况 2:偏移量 (k=1) 即上三角形部分不包括对角线
import numpy as np
X = np.array([[1,2,3],[4,5,6],[7,8,9]])
#array([[1, 2, 3],
# [4, 5, 6],
# [7, 8, 9]])
#get the upper triangular part of this matrix
v = X[np.triu_indices(X.shape[0], k = 1)] # offset
print(v)
# [2 3 6]
# put it back into a 2D symmetric array
size_X = 3
X = np.zeros((size_X,size_X))
X[np.triu_indices(X.shape[0], k = 1)] = v
X = X + X.T
#array([[0., 2., 3.],
# [2., 0., 6.],
# [3., 6., 0.]])
Run Code Online (Sandbox Code Playgroud)
你只想形成一个对称阵列吗?您可以完全跳过对角线索引.
m=np.array(m)
inds = np.triu_indices_from(m,k=1)
m[(inds[1], inds[0])] = m[inds]
m
array([[11, 12, 13],
[12, 22, 23],
[13, 23, 33]])
Run Code Online (Sandbox Code Playgroud)
从以下位置创建对称数组:
new = np.zeros((3,3))
vals = np.array([11, 12, 13, 22, 23, 33])
inds = np.triu_indices_from(new)
new[inds] = vals
new[(inds[1], inds[0])] = vals
new
array([[ 11., 12., 13.],
[ 12., 22., 23.],
[ 13., 23., 33.]])
Run Code Online (Sandbox Code Playgroud)
小智 5
您可以使用数组创建例程(例如numpy.triu、numpy.tril和numpy.diag )从三角形创建对称矩阵。这是一个简单的 3x3 示例。
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
a_triu = np.triu(a, k=0)
array([[1, 2, 3],
[0, 5, 6],
[0, 0, 9]])
a_tril = np.tril(a, k=0)
array([[1, 0, 0],
[4, 5, 0],
[7, 8, 9]])
a_diag = np.diag(np.diag(a))
array([[1, 0, 0],
[0, 5, 0],
[0, 0, 9]])
Run Code Online (Sandbox Code Playgroud)
添加转置并减去对角线:
a_sym_triu = a_triu + a_triu.T - a_diag
array([[1, 2, 3],
[2, 5, 6],
[3, 6, 9]])
a_sym_tril = a_tril + a_tril.T - a_diag
array([[1, 4, 7],
[4, 5, 8],
[7, 8, 9]])
Run Code Online (Sandbox Code Playgroud)