如何以有效的方式找到两个轮廓集之间的所有交点

Pab*_*blo 6 python numpy matplotlib computational-geometry

我想知道在两组轮廓线之间找到所有交点(到舍入误差)的最佳方法.这是最好的方法吗?这是一个例子:

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-1,1,500)
X,Y = np.meshgrid(x,x)
Z1 = np.abs(np.sin(2*X**2+Y))
Z2 = np.abs(np.cos(2*Y**2+X**2))
plt.contour(Z1,colors='k')
plt.contour(Z2,colors='r')
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

我想要一些类似的:

intersection_points = intersect(contour1,contour2)
print intersection_points
[(x1,y1),...,(xn,yn)]
Run Code Online (Sandbox Code Playgroud)

unu*_*tbu 7

import collections
import matplotlib.pyplot as plt
import numpy as np
import scipy.spatial as spatial
import scipy.spatial.distance as dist
import scipy.cluster.hierarchy as hier


def intersection(points1, points2, eps):
    tree = spatial.KDTree(points1)
    distances, indices = tree.query(points2, k=1, distance_upper_bound=eps)
    intersection_points = tree.data[indices[np.isfinite(distances)]]
    return intersection_points


def cluster(points, cluster_size):
    dists = dist.pdist(points, metric='sqeuclidean')
    linkage_matrix = hier.linkage(dists, 'average')
    groups = hier.fcluster(linkage_matrix, cluster_size, criterion='distance')
    return np.array([points[cluster].mean(axis=0)
                     for cluster in clusterlists(groups)])


def contour_points(contour, steps=1):
    return np.row_stack([path.interpolated(steps).vertices
                         for linecol in contour.collections
                         for path in linecol.get_paths()])


def clusterlists(T):
    '''
    http://stackoverflow.com/a/2913071/190597 (denis)
    T = [2, 1, 1, 1, 2, 2, 2, 2, 2, 1]
    Returns [[0, 4, 5, 6, 7, 8], [1, 2, 3, 9]]
    '''
    groups = collections.defaultdict(list)
    for i, elt in enumerate(T):
        groups[elt].append(i)
    return sorted(groups.values(), key=len, reverse=True)

# every intersection point must be within eps of a point on the other
# contour path
eps = 1.0

# cluster together intersection points so that the original points in each flat
# cluster have a cophenetic_distance < cluster_size
cluster_size = 100

x = np.linspace(-1, 1, 500)
X, Y = np.meshgrid(x, x)
Z1 = np.abs(np.sin(2 * X ** 2 + Y))
Z2 = np.abs(np.cos(2 * Y ** 2 + X ** 2))
contour1 = plt.contour(Z1, colors='k')
contour2 = plt.contour(Z2, colors='r')

points1 = contour_points(contour1)
points2 = contour_points(contour2)

intersection_points = intersection(points1, points2, eps)
intersection_points = cluster(intersection_points, cluster_size)
plt.scatter(intersection_points[:, 0], intersection_points[:, 1], s=20)
plt.show()
Run Code Online (Sandbox Code Playgroud)

产量

在此输入图像描述