我有一个大型数据集,并希望将其分为培训(50%)和测试集(50%).
假设我有100个示例存储输入文件,每行包含一个示例.我需要选择50行作为训练集和50行测试集.
我的想法是首先生成一个长度为100的随机列表(值范围从1到100),然后使用前50个元素作为50个训练样例的行号.与测试集相同.
这可以在Matlab中轻松实现
fid=fopen(datafile);
C = textscan(fid, '%s','delimiter', '\n');
plist=randperm(100);
for i=1:50
trainstring = C{plist(i)};
fprintf(train_file,trainstring);
end
for i=51:100
teststring = C{plist(i)};
fprintf(test_file,teststring);
end
Run Code Online (Sandbox Code Playgroud)
但是我怎么能在Python中完成这个功能呢?我是Python的新手,不知道我是否可以将整个文件读入数组,并选择某些行.
ijm*_*all 68
这可以使用列表在Python中类似地完成(注意整个列表是在适当的位置洗牌).
import random
with open("datafile.txt", "rb") as f:
data = f.read().split('\n')
random.shuffle(data)
train_data = data[:50]
test_data = data[50:]
Run Code Online (Sandbox Code Playgroud)
小智 23
from sklearn.model_selection import train_test_split
import numpy
with open("datafile.txt", "rb") as f:
data = f.read().split('\n')
data = numpy.array(data) #convert array to numpy type array
x_train ,x_test = train_test_split(data,test_size=0.5) #test_size=0.5(whole_data)
Run Code Online (Sandbox Code Playgroud)
你也可以使用numpy.当您的数据存储在numpy.ndarray中时:
import numpy as np
from random import sample
l = 100 #length of data
f = 50 #number of elements you need
indices = sample(range(l),f)
train_data = data[indices]
test_data = np.delete(data,indices)
Run Code Online (Sandbox Code Playgroud)
小智 6
你可以试试这个方法
import pandas
import sklearn
csv = pandas.read_csv('data.csv')
train, test = sklearn.cross_validation.train_test_split(csv, train_size = 0.5)
Run Code Online (Sandbox Code Playgroud)
更新:train_test_split已转移到model_selection当前的方式(scikit-learn 0.22.2)来做到这一点:
import pandas
import sklearn
csv = pandas.read_csv('data.csv')
train, test = sklearn.model_selection.train_test_split(csv, train_size = 0.5)
Run Code Online (Sandbox Code Playgroud)
为了回答@ desmond.carros问题,我将最佳答案修改如下,
import random
file=open("datafile.txt","r")
data=list()
for line in file:
data.append(line.split(#your preferred delimiter))
file.close()
random.shuffle(data)
train_data = data[:int((len(data)+1)*.80)] #Remaining 80% to training set
test_data = data[int(len(data)*.80+1):] #Splits 20% data to test set
Run Code Online (Sandbox Code Playgroud)
该代码将整个数据集拆分为80%的训练和20%的测试数据
小智 6
sklearn.cross_validation从版本0.18开始不推荐使用,您应该使用sklearn.model_selection如下所示
from sklearn.model_selection import train_test_split
import numpy
with open("datafile.txt", "rb") as f:
data = f.read().split('\n')
data = numpy.array(data) #convert array to numpy type array
x_train ,x_test = train_test_split(data,test_size=0.5) #test_size=0.5(whole_data)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
100690 次 |
| 最近记录: |