los*_*ost 5 python numpy slice
假设我有一个3D numpy.array,例如尺寸为xyz,有没有办法沿特定轴迭代切片?就像是:
for layer in data.slices(dim=2):
# do something with layer
Run Code Online (Sandbox Code Playgroud)
编辑:为了澄清,该示例是一个dim = 3数组,即shape =(len_x,len_y,len_z).Elazar和等效的kamjagin解决方案有效,但不是那么通用 - 你必须[:, :, i]手工构建,这意味着你需要知道尺寸,而且代码不够通用,无法处理任意尺寸的数组.您可以通过使用类似的东西来填充缺失的维度[..., :],但是您仍然需要自己构建它.
对不起,应该更清楚,这个例子有点太简单了!
迭代第一维很容易,见下文.要迭代其他维度,请将该维度滚动到前面并执行相同操作:
>>> data = np.arange(24).reshape(2, 3, 4)
>>> for dim_0_slice in data: # the first dimension is easy
... print dim_0_slice
...
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]
>>> for dim_1_slice in np.rollaxis(data, 1): # for the others, roll it to the front
... print dim_1_slice
...
[[ 0 1 2 3]
[12 13 14 15]]
[[ 4 5 6 7]
[16 17 18 19]]
[[ 8 9 10 11]
[20 21 22 23]]
>>> for dim_2_slice in np.rollaxis(data, 2):
... print dim_2_slice
...
[[ 0 4 8]
[12 16 20]]
[[ 1 5 9]
[13 17 21]]
[[ 2 6 10]
[14 18 22]]
[[ 3 7 11]
[15 19 23]]
Run Code Online (Sandbox Code Playgroud)
编辑一些时间,比较大型阵列的不同方法:
In [7]: a = np.arange(200*100*300).reshape(200, 100, 300)
In [8]: %timeit for j in xrange(100): a[:, j]
10000 loops, best of 3: 60.2 us per loop
In [9]: %timeit for j in xrange(100): a[:, j, :]
10000 loops, best of 3: 82.8 us per loop
In [10]: %timeit for j in np.rollaxis(a, 1): j
10000 loops, best of 3: 28.2 us per loop
In [11]: %timeit for j in np.swapaxes(a, 0, 1): j
10000 loops, best of 3: 26.7 us per loop
Run Code Online (Sandbox Code Playgroud)