如何通过C中的PID监视事件的外部进程?

Lui*_*BOL 19 c linux signals pid process

是否有任何库有一些功能允许人们通过它监视外部进程的事件pid_t?我的意思是,监视外部进程是否已退出,或者是否已创建一个或多个子进程(with fork),或者它是否已成为另一个可执行映像(通过函数execposix_spawn函数系列调用)或是否已将Unix信号传递给它.

编辑

我需要的东西不会干扰正在监控的程序的执行.因此,我不应该使用ptrace,因为它会在发出一些信号时停止正在监视的进程,并且只要发生这种情况就必须恢复进程.

Nom*_*mal 17

使用捕获的预加载库运行目标二进制文件fork().只要所有子进程也使用预加载库,您将看到所有本地子进程,无论执行方式如何.

这是一个示例实现.

首先是forkmonitor.h头文件.它定义了从预加载库传递到监视进程的消息:

#ifndef   FORKMONITOR_H
#define   FORKMONITOR_H

#define   FORKMONITOR_ENVNAME "FORKMONITOR_SOCKET"

#ifndef   UNIX_PATH_MAX
#define   UNIX_PATH_MAX 108
#endif

#define TYPE_EXEC       1   /* When a binary is executed */
#define TYPE_DONE       2   /* exit() or return from main() */
#define TYPE_FORK       3
#define TYPE_VFORK      4
#define TYPE_EXIT       5   /* _exit() or _Exit() */
#define TYPE_ABORT      6   /* abort() */

struct message {
    pid_t          pid;     /* Process ID */
    pid_t          ppid;    /* Parent process ID */
    pid_t          sid;     /* Session ID */
    pid_t          pgid;    /* Process group ID */
    uid_t          uid;     /* Real user ID */
    gid_t          gid;     /* Real group ID */
    uid_t          euid;    /* Effective user ID */
    gid_t          egid;    /* Effective group ID */
    unsigned short len;     /* Length of data[] */
    unsigned char  type;    /* One of the TYPE_ constants */
    char           data[0]; /* Optional payload, possibly longer */
};

#endif /* FORKMONITOR_H */
Run Code Online (Sandbox Code Playgroud)

FORKMONITOR_SOCKET环境变量(由指定的FORKMONITOR_ENVNAME上面的宏)指定Unix域数据报套接字addess到监控过程.如果未定义或为空,则不发送监视消息.

这是图书馆本身libforkmonitor.c.请注意,我简化了代码,省略了多线程初始化(因为库很少会调用任何截获的函数,甚至很少从多个线程执行).最好使用原子内置函数(__sync_bool_compare_and_swap())来更新函数指针,并使用原子获取器(__sync_fetch_and_or(,0))来检索函数指针,以避免任何库问题.(这对于多线程程序来说非常安全,因为指针只会在main()执行之前被修改.)

#define  _POSIX_C_SOURCE 200809L
#define  _GNU_SOURCE
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <dlfcn.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "forkmonitor.h"

static pid_t (*actual_fork)(void)  = NULL;
static pid_t (*actual_vfork)(void) = NULL;
static void  (*actual_abort)(void) = NULL;
static void  (*actual__exit)(int)  = NULL;
static void  (*actual__Exit)(int)  = NULL;
static int     commfd = -1;

#define MINIMUM_COMMFD  31

static void notify(const int type, struct message *const msg, const size_t extra)
{
    const int    saved_errno = errno;

    msg->pid  = getpid();
    msg->ppid = getppid();
    msg->sid  = getsid(0);
    msg->pgid = getpgrp();
    msg->uid  = getuid();
    msg->gid  = getgid();
    msg->euid = geteuid();
    msg->egid = getegid();
    msg->len  = extra;
    msg->type = type;

    /* Since we don't have any method of dealing with send() errors
     * or partial send()s, we just fire one off and hope for the best. */
    send(commfd, msg, sizeof (struct message) + extra, MSG_EOR | MSG_NOSIGNAL);

    errno = saved_errno;
}

void libforkmonitor_init(void) __attribute__((constructor));
void libforkmonitor_init(void)
{
    const int saved_errno = errno;
    int       result;

    /* Save the actual fork() call pointer. */
    if (!actual_fork)
        *(void **)&actual_fork = dlsym(RTLD_NEXT, "fork");

    /* Save the actual vfork() call pointer. */
    if (!actual_vfork)
        *(void **)&actual_vfork = dlsym(RTLD_NEXT, "vfork");

    /* Save the actual abort() call pointer. */
    if (!actual_abort)
        *(void **)&actual_abort = dlsym(RTLD_NEXT, "abort");

    /* Save the actual _exit() call pointer. */
    if (!actual__exit)
        *(void **)&actual__exit = dlsym(RTLD_NEXT, "_exit");
    if (!actual__exit)
        *(void **)&actual__exit = dlsym(RTLD_NEXT, "_Exit");

    /* Save the actual abort() call pointer. */
    if (!actual__Exit)
        *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_Exit");
    if (!actual__Exit)
        *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_exit");

    /* Open an Unix domain datagram socket to the observer. */
    if (commfd == -1) {
        const char *address;

        /* Connect to where? */
        address = getenv(FORKMONITOR_ENVNAME);
        if (address && *address) {
            struct sockaddr_un addr;

            memset(&addr, 0, sizeof addr);
            addr.sun_family = AF_UNIX;
            strncpy(addr.sun_path, address, sizeof addr.sun_path - 1);

            /* Create and bind the socket. */
            commfd = socket(AF_UNIX, SOCK_DGRAM, 0);
            if (commfd != -1) {
                if (connect(commfd, (const struct sockaddr *)&addr, sizeof (addr)) == -1) {
                    /* Failed. Close the socket. */
                    do {
                        result = close(commfd);
                    } while (result == -1 && errno == EINTR);
                    commfd = -1;
                }
            }

            /* Move commfd to a high descriptor, to avoid complications. */
            if (commfd != -1 && commfd < MINIMUM_COMMFD) {
                const int newfd = MINIMUM_COMMFD;
                do {
                    result = dup2(commfd, newfd);
                } while (result == -1 && errno == EINTR);
                if (!result) {
                    do {
                        result = close(commfd);
                    } while (result == -1 && errno == EINTR);
                    commfd = newfd;
                }
            }
        }
    }

    /* Send an init message, listing the executable path. */
    if (commfd != -1) {
        size_t          len = 128;
        struct message *msg = NULL;

        while (1) {
            ssize_t n;

            free(msg);
            msg = malloc(sizeof (struct message) + len);
            if (!msg) {
                len = 0;
                break;
            }

            n = readlink("/proc/self/exe", msg->data, len);
            if (n > (ssize_t)0 && (size_t)n < len) {
                msg->data[n] = '\0';
                len = n + 1;
                break;
            }

            len = (3 * len) / 2;
            if (len >= 65536U) {
                free(msg);
                msg = NULL;
                len = 0;
                break;
            }
        }

        if (len > 0) {
            /* INIT message with executable name */
            notify(TYPE_EXEC, msg, len);
            free(msg);
        } else {
            /* INIT message without executable name */
            struct message msg2;
            notify(TYPE_EXEC, &msg2, sizeof msg2);
        }
    }

    /* Restore errno. */
    errno = saved_errno;
}

void libforkmonitor_done(void) __attribute__((destructor));
void libforkmonitor_done(void)
{
    const int saved_errno = errno;
    int       result;

    /* Send an exit message, no data. */
    if (commfd != -1) {
        struct message msg;
        notify(TYPE_DONE, &msg, sizeof msg);
    }

    /* If commfd is open, close it. */
    if (commfd != -1) {
        do {
            result = close(commfd);
        } while (result == -1 && errno == EINTR);
    }

    /* Restore errno. */
    errno = saved_errno;
}

/*
 * Hooked C library functions.
*/

pid_t fork(void)
{
    pid_t result;

    if (!actual_fork) {
        const int saved_errno = errno;

        *(void **)&actual_fork = dlsym(RTLD_NEXT, "fork");
        if (!actual_fork) {
            errno = EAGAIN;
            return (pid_t)-1;
        }

        errno = saved_errno;
    }

    result = actual_fork();
    if (!result && commfd != -1) {
        struct message msg;
        notify(TYPE_FORK, &msg, sizeof msg);
    }

    return result;
}

pid_t vfork(void)
{
    pid_t result;

    if (!actual_vfork) {
        const int saved_errno = errno;

        *(void **)&actual_vfork = dlsym(RTLD_NEXT, "vfork");
        if (!actual_vfork) {
            errno = EAGAIN;
            return (pid_t)-1;
        }

        errno = saved_errno;
    }

    result = actual_vfork();
    if (!result && commfd != -1) {
        struct message msg;
        notify(TYPE_VFORK, &msg, sizeof msg);
    }

    return result;
}

void _exit(const int code)
{
    if (!actual__exit) {
        const int saved_errno = errno;
        *(void **)&actual__exit = dlsym(RTLD_NEXT, "_exit");
        if (!actual__exit)
            *(void **)&actual__exit = dlsym(RTLD_NEXT, "_Exit");
        errno = saved_errno;
    }

    if (commfd != -1) {
        struct {
            struct message  msg;
            int             extra;
        } data;

        memcpy(&data.msg.data[0], &code, sizeof code);
        notify(TYPE_EXIT, &(data.msg), sizeof (struct message) + sizeof (int));
    }

    if (actual__exit)
        actual__exit(code);

    exit(code);
}

void _Exit(const int code)
{
    if (!actual__Exit) {
        const int saved_errno = errno;
        *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_Exit");
        if (!actual__Exit)
            *(void **)&actual__Exit = dlsym(RTLD_NEXT, "_exit");
        errno = saved_errno;
    }

    if (commfd != -1) {
        struct {
            struct message  msg;
            int             extra;
        } data;

        memcpy(&data.msg.data[0], &code, sizeof code);
        notify(TYPE_EXIT, &(data.msg), sizeof (struct message) + sizeof (int));
    }

    if (actual__Exit)
        actual__Exit(code);

    exit(code);
}

void abort(void)
{
    if (!actual_abort) {
        const int saved_errno = errno;
        *(void **)&actual_abort = dlsym(RTLD_NEXT, "abort");
        errno = saved_errno;
    }

    if (commfd != -1) {
        struct message msg;
        notify(TYPE_ABORT, &msg, sizeof msg);
    }

    actual_abort();
    exit(127);
}
Run Code Online (Sandbox Code Playgroud)

libforkmonitor_init()调用进程之前,运行时链接程序main()会自动调用该函数,并libforkmonitor_done()在进程返回main()或调用时调用该函数exit().

libforkmonitor_init()打开一个Unix域数据报套接字的监测过程,并立即将其凭据和路径当前的可执行文件.每一个孩子的过程(只要预紧库仍然加载)他们装后执行这一点,所以就没有必要追赶exec*()posix_spawn*()或"popen方法()`等等功能都没有.

C库起作用fork()并被vfork()截获.需要这些拦截来捕获原始程序在不执行任何其他二进制文件的情况下分叉创建从属进程的情况.(至少GNU C库使用fork()在内部,所以这些将捕获popen(),posix_spawn()等太).

此外,C库函数_exit(),_Exit()以及abort()被拦截了.我添加了这些,因为有些二进制文件,特别是Dash,喜欢使用_exit(),我认为捕获所有形式的正常出口会很好.(但是,由于信号没有检测到死亡;如果二进制执行另一个二进制文件,您将只获得新的EXEC消息.请注意进程和父进程ID.)

这是一个简单的监控程序,forkmonitor.c:

#define  _POSIX_C_SOURCE 200809L
#include <unistd.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <signal.h>
#include <pwd.h>
#include <grp.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "forkmonitor.h"

static volatile sig_atomic_t  done = 0;

static void done_handler(const int signum)
{
    if (!done)
        done = signum;
}

static int catch_done(const int signum)
{
    struct sigaction  act;

    sigemptyset(&act.sa_mask);
    act.sa_handler = done_handler;
    act.sa_flags = 0;

    if (sigaction(signum, &act, NULL) == -1)
        return errno;

    return 0;
}

static const char *username(const uid_t uid)
{
    static char    buffer[128];
    struct passwd *pw;

    pw = getpwuid(uid);
    if (!pw)
        return NULL;

    strncpy(buffer, pw->pw_name, sizeof buffer - 1);
    buffer[sizeof buffer - 1] = '\0';

    return (const char *)buffer;
}

static const char *groupname(const gid_t gid)
{
    static char   buffer[128];
    struct group *gr;

    gr = getgrgid(gid);
    if (!gr)
        return NULL;

    strncpy(buffer, gr->gr_name, sizeof buffer - 1);
    buffer[sizeof buffer - 1] = '\0';

    return (const char *)buffer;
}

int main(int argc, char *argv[])
{
    const size_t    msglen = 65536;
    struct message *msg;
    int             socketfd, result;
    const char     *user, *group;

    if (catch_done(SIGINT) || catch_done(SIGQUIT) || catch_done(SIGHUP) ||
        catch_done(SIGTERM) || catch_done(SIGPIPE)) {
        fprintf(stderr, "Cannot set signal handlers: %s.\n", strerror(errno));
        return 1;
    }

    if (argc != 2 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
        fprintf(stderr, "\n");
        fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv[0]);
        fprintf(stderr, "       %s MONITOR-SOCKET-PATH\n", argv[0]);
        fprintf(stderr, "\n");
        fprintf(stderr, "This program outputs events reported by libforkmonitor\n");
        fprintf(stderr, "to Unix domain datagram sockets at MONITOR-SOCKET-PATH.\n");
        fprintf(stderr, "\n");
        return 0;
    }

    msg = malloc(msglen);
    if (!msg) {
        fprintf(stderr, "Out of memory.\n");
        return 1;
    }

    socketfd = socket(AF_UNIX, SOCK_DGRAM, 0);
    if (socketfd == -1) {
        fprintf(stderr, "Cannot create an Unix domain datagram socket: %s.\n", strerror(errno));
        return 1;
    }

    {
        struct sockaddr_un  addr;
        size_t              len;

        if (argv[1])
            len = strlen(argv[1]);
        else
            len = 0;
        if (len < 1 || len >= UNIX_PATH_MAX) {
            fprintf(stderr, "%s: Path is too long (max. %d characters)\n", argv[1], UNIX_PATH_MAX - 1);
            return 1;
        }

        memset(&addr, 0, sizeof addr);
        addr.sun_family = AF_UNIX;
        memcpy(addr.sun_path, argv[1], len + 1); /* Include '\0' at end */

        if (bind(socketfd, (struct sockaddr *)&addr, sizeof (addr)) == -1) {
            fprintf(stderr, "Cannot bind to %s: %s.\n", argv[1], strerror(errno));
            return 1;
        }
    }

    printf("Waiting for connections.\n");
    printf("\n");

    /* Infinite loop. */
    while (!done) {
        ssize_t  n;

        n = recv(socketfd, msg, msglen, 0);
        if (n == -1) {
            const char *const errmsg = strerror(errno);
            fprintf(stderr, "%s.\n", errmsg);
            fflush(stderr);
            break;
        }

        if (msglen < sizeof (struct message)) {
            fprintf(stderr, "Received a partial message; discarded.\n");
            fflush(stderr);
            continue;
        }

        switch (msg->type) {
        case TYPE_EXEC:
            printf("Received an EXEC message:\n");
            break;
        case TYPE_DONE:
            printf("Received a DONE message:\n");
            break;
        case TYPE_FORK:
            printf("Received a FORK message:\n");
            break;
        case TYPE_VFORK:
            printf("Received a VFORK message:\n");
            break;
        case TYPE_EXIT:
            printf("Received an EXIT message:\n");
            break;
        case TYPE_ABORT:
            printf("Received an ABORT message:\n");
            break;
        default:
            printf("Received an UNKNOWN message:\n");
            break;
        }

        if (msg->type == TYPE_EXEC && (size_t)n > sizeof (struct message)) {
            if (*((char *)msg + n - 1) == '\0')
                printf("\tExecutable:        '%s'\n", (char *)msg + sizeof (struct message));
        }

        printf("\tProcess ID:         %d\n", (int)msg->pid);
        printf("\tParent process ID:  %d\n", (int)msg->ppid);
        printf("\tSession ID:         %d\n", (int)msg->sid);
        printf("\tProcess group ID:   %d\n", (int)msg->pgid);

        user = username(msg->uid);
        if (user)
            printf("\tReal user:         '%s' (%d)\n", user, (int)msg->uid);
        else
            printf("\tReal user:          %d\n", (int)msg->uid);

        group = groupname(msg->gid);
        if (group)
            printf("\tReal group:        '%s' (%d)\n", group, (int)msg->gid);
        else
            printf("\tReal group:         %d\n", (int)msg->gid);

        user = username(msg->euid);
        if (user)
            printf("\tEffective user:    '%s' (%d)\n", user, (int)msg->euid);
        else
            printf("\tEffective user:     %d\n", (int)msg->euid);

        group = groupname(msg->egid);
        if (group)
            printf("\tEffective group:   '%s' (%d)\n", group, (int)msg->egid);
        else
            printf("\tEffective group:    %d\n", (int)msg->egid);

        printf("\n");
        fflush(stdout);
    }

    do {
        result = close(socketfd);
    } while (result == -1 && errno == EINTR);

    unlink(argv[1]);

    return 0;
}
Run Code Online (Sandbox Code Playgroud)

它需要一个命令行参数,即Unix域套接字地址.它应该是一个绝对的文件系统路径.

您可以停止通过监控程序INT(Ctrl+C)HUP,QUITTERM信号.

使用编译库

gcc -W -Wall -O3 -fpic -fPIC -c libforkmonitor.c
gcc -shared -Wl,-soname,libforkmonitor.so libforkmonitor.o -ldl -o libforkmonitor.so
Run Code Online (Sandbox Code Playgroud)

和监控程序使用

gcc -W -Wall -O3 forkmonitor.c -o forkmonitor
Run Code Online (Sandbox Code Playgroud)

在一个终端窗口中,首先启动forkmonitor:

./forkmonitor "$PWD/commsocket"
Run Code Online (Sandbox Code Playgroud)

在另一个终端窗口中,在同一目录中,运行被监视的命令,自动预加载libforkmonitor.so库并指定监视器的套接字:

env "LD_PRELOAD=$PWD/libforkmonitor.so" "FORKMONITOR_SOCKET=$PWD/commsocket" command args...
Run Code Online (Sandbox Code Playgroud)

请注意,因为它使用LD_PRELOADFORKMONITOR_SOCKET环境变量,如果父进程修改环境(删除两个环境变量),以及执行setuidsetgid二进制时,将忽略子进程.通过消除环境变量并对其进行硬编码可以避免这种限制.

运行时链接程序不会预加载库setuidsetgid二进制文件库,除非该库位于其中一个标准库目录中,并且还标记了该库setgid.

添加库名称/etc/ld.so.preload将为所有二进制文件预加载库,但是您可能应该添加一种机制libforkmonitor_init(),将监视限制为所需的二进制文件和/或指定的真实用户(当运行setuid二进制文件时,有效用户会更改).

例如,当我跑

env "LD_PRELOAD=$PWD/libforkmonitor.so" "FORKMONITOR_SOCKET=$PWD/commsocket" sh -c 'date ; ls -laF'
Run Code Online (Sandbox Code Playgroud)

监控输出是(匿名的):

Received an EXEC message:
Executable:        'bin/dash'
Process ID:         11403
Parent process ID:  9265
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received a FORK message:
Process ID:         11404
Parent process ID:  11403
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received an EXEC message:
Executable:        'bin/date'
Process ID:         11404
Parent process ID:  11403
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received a DONE message:
Process ID:         11404
Parent process ID:  11403
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received a FORK message:
Process ID:         11405
Parent process ID:  11403
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received an EXEC message:
Executable:        'bin/ls'
Process ID:         11405
Parent process ID:  11403
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received a DONE message:
Process ID:         11405
Parent process ID:  11403
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)

Received an EXIT message:
Process ID:         11403
Parent process ID:  9265
Session ID:         9265
Process group ID:   11403
Real user:         'username' (1000)
Real group:        'username' (1000)
Effective user:    'username' (1000)
Effective group:   'username' (1000)
Run Code Online (Sandbox Code Playgroud)

这是一个非常轻量级的流程树监控解决方案.除了进程启动,退出,并调用的拦截功能(一个fork(),vfork(),_exit(),_Exit(),abort()),程序执行不会造成任何影响.因为图书馆很轻,即使受影响的人也会受到非常非常小的影响; 可能还不足以可靠地测量.

It is obviously possible to intercept other functions, and/or use two-way communication, "pausing" the execution of the intercepted function until the monitoring application responds.

There are some pitfalls overall, especially related to setuid/setgid processes, and processes that generate a new environment (omitting the LD_PRELOAD and FORKMONITOR_SOCKET environment variables), but those can be worked around if superuser privileges are available.

Hope you find this informative. Questions?

  • @ LuisAntonioBotelhoO.Leite:让任何*用户进程监控任何其他进程都存在安全风险.仅仅因为某些操作系统允许它,这不是一个好主意.Linux需要root权限才能执行此操作.在您的情况下,我认为最好的选择是netlink过滤器setuid程序:安装为set-uid root,任何用户都可以运行它,但它只会报告属于同一用户或组的进程的信息(包括用户组)是...的成员. (2认同)

hoo*_*nto 8

如果您可以以root身份运行,那么您可以使用netlink接口proc事件:

http://bewareofgeek.livejournal.com/2945.html

我只是在fedora 17 x86_64上干净地编译它,它给了我这个:

[root@hip1 yotest]# ./proc
set mcast listen ok
fork: parent tid=2358 pid=2358 -> child tid=21007 pid=21007
exec: tid=21007 pid=21007
fork: parent tid=21007 pid=21007 -> child tid=21008 pid=21008
fork: parent tid=21007 pid=21007 -> child tid=21009 pid=21009
fork: parent tid=21007 pid=21007 -> child tid=21010 pid=21010
fork: parent tid=21007 pid=21007 -> child tid=21011 pid=21011
exec: tid=21010 pid=21010
exec: tid=21008 pid=21008
exec: tid=21011 pid=21011
exec: tid=21009 pid=21009
exit: tid=21008 pid=21008 exit_code=0
fork: parent tid=21010 pid=21010 -> child tid=21012 pid=21012
exit: tid=21009 pid=21009 exit_code=0
exec: tid=21012 pid=21012
exit: tid=21012 pid=21012 exit_code=0
exit: tid=21010 pid=21010 exit_code=0
exit: tid=21011 pid=21011 exit_code=0
exit: tid=21007 pid=21007 exit_code=0
Run Code Online (Sandbox Code Playgroud)

您需要过滤您感兴趣的特定pid,但您可以在第107行的switch语句中轻松完成.

出于保存目的:

#include <sys/socket.h>
#include <linux/netlink.h>
#include <linux/connector.h>
#include <linux/cn_proc.h>
#include <signal.h>
#include <errno.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

/*
 * connect to netlink
 * returns netlink socket, or -1 on error
 */
static int nl_connect()
{
    int rc;
    int nl_sock;
    struct sockaddr_nl sa_nl;

    nl_sock = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
    if (nl_sock == -1) {
        perror("socket");
        return -1;
    }

    sa_nl.nl_family = AF_NETLINK;
    sa_nl.nl_groups = CN_IDX_PROC;
    sa_nl.nl_pid = getpid();

    rc = bind(nl_sock, (struct sockaddr *)&sa_nl, sizeof(sa_nl));
    if (rc == -1) {
        perror("bind");
        close(nl_sock);
        return -1;
    }

    return nl_sock;
}

/*
 * subscribe on proc events (process notifications)
 */
static int set_proc_ev_listen(int nl_sock, bool enable)
{
    int rc;
    struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
        struct nlmsghdr nl_hdr;
        struct __attribute__ ((__packed__)) {
            struct cn_msg cn_msg;
            enum proc_cn_mcast_op cn_mcast;
        };
    } nlcn_msg;

    memset(&nlcn_msg, 0, sizeof(nlcn_msg));
    nlcn_msg.nl_hdr.nlmsg_len = sizeof(nlcn_msg);
    nlcn_msg.nl_hdr.nlmsg_pid = getpid();
    nlcn_msg.nl_hdr.nlmsg_type = NLMSG_DONE;

    nlcn_msg.cn_msg.id.idx = CN_IDX_PROC;
    nlcn_msg.cn_msg.id.val = CN_VAL_PROC;
    nlcn_msg.cn_msg.len = sizeof(enum proc_cn_mcast_op);

    nlcn_msg.cn_mcast = enable ? PROC_CN_MCAST_LISTEN : PROC_CN_MCAST_IGNORE;

    rc = send(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
    if (rc == -1) {
        perror("netlink send");
        return -1;
    }

    return 0;
}

/*
 * handle a single process event
 */
static volatile bool need_exit = false;
static int handle_proc_ev(int nl_sock)
{
    int rc;
    struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
        struct nlmsghdr nl_hdr;
        struct __attribute__ ((__packed__)) {
            struct cn_msg cn_msg;
            struct proc_event proc_ev;
        };
    } nlcn_msg;

    while (!need_exit) {
        rc = recv(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
        if (rc == 0) {
            /* shutdown? */
            return 0;
        } else if (rc == -1) {
            if (errno == EINTR) continue;
            perror("netlink recv");
            return -1;
        }
        switch (nlcn_msg.proc_ev.what) {
            case PROC_EVENT_NONE:
                printf("set mcast listen ok\n");
                break;
            case PROC_EVENT_FORK:
                printf("fork: parent tid=%d pid=%d -> child tid=%d pid=%d\n",
                        nlcn_msg.proc_ev.event_data.fork.parent_pid,
                        nlcn_msg.proc_ev.event_data.fork.parent_tgid,
                        nlcn_msg.proc_ev.event_data.fork.child_pid,
                        nlcn_msg.proc_ev.event_data.fork.child_tgid);
                break;
            case PROC_EVENT_EXEC:
                printf("exec: tid=%d pid=%d\n",
                        nlcn_msg.proc_ev.event_data.exec.process_pid,
                        nlcn_msg.proc_ev.event_data.exec.process_tgid);
                break;
            case PROC_EVENT_UID:
                printf("uid change: tid=%d pid=%d from %d to %d\n",
                        nlcn_msg.proc_ev.event_data.id.process_pid,
                        nlcn_msg.proc_ev.event_data.id.process_tgid,
                        nlcn_msg.proc_ev.event_data.id.r.ruid,
                        nlcn_msg.proc_ev.event_data.id.e.euid);
                break;
            case PROC_EVENT_GID:
                printf("gid change: tid=%d pid=%d from %d to %d\n",
                        nlcn_msg.proc_ev.event_data.id.process_pid,
                        nlcn_msg.proc_ev.event_data.id.process_tgid,
                        nlcn_msg.proc_ev.event_data.id.r.rgid,
                        nlcn_msg.proc_ev.event_data.id.e.egid);
                break;
            case PROC_EVENT_EXIT:
                printf("exit: tid=%d pid=%d exit_code=%d\n",
                        nlcn_msg.proc_ev.event_data.exit.process_pid,
                        nlcn_msg.proc_ev.event_data.exit.process_tgid,
                        nlcn_msg.proc_ev.event_data.exit.exit_code);
                break;
            default:
                printf("unhandled proc event\n");
                break;
        }
    }

    return 0;
}

static void on_sigint(int unused)
{
    need_exit = true;
}

int main(int argc, const char *argv[])
{
    int nl_sock;
    int rc = EXIT_SUCCESS;

    signal(SIGINT, &on_sigint);
    siginterrupt(SIGINT, true);

    nl_sock = nl_connect();
    if (nl_sock == -1)
        exit(EXIT_FAILURE);

    rc = set_proc_ev_listen(nl_sock, true);
    if (rc == -1) {
        rc = EXIT_FAILURE;
        goto out;
    }

    rc = handle_proc_ev(nl_sock);
    if (rc == -1) {
        rc = EXIT_FAILURE;
        goto out;
    }

    set_proc_ev_listen(nl_sock, false);

out:
    close(nl_sock);
    exit(rc);
}
Run Code Online (Sandbox Code Playgroud)

(gcc -o proc proc.c)

关于netlink的一些信息:

摘录:http: //www.linuxjournal.com/article/7356

Netlink是异步的,因为与任何其他套接字API一样,它提供了一个套接字队列来平滑消息的突发.发送netlink消息的系统调用将消息排队到接收者的netlink队列,然后调用接收者的接收处理程序.接收处理程序的上下文中的接收器可以决定是立即处理消息还是将消息保留在队列中,稍后在不同的上下文中处理它.与netlink不同,系统调用需要同步处理.因此,如果我们使用系统调用将消息从用户空间传递到内核,则如果处理该消息的时间很长,则内核调度粒度可能会受到影响.

最近nltrace也发布了这个有趣的公告,你也可能觉得有趣! http://lists.infradead.org/pipermail/libnl/2013-April/000993.html